[1]R. Thomson, J. Hancock, Stress and strain fields near a contained porous imperfection in a plastically deforming matrix, Res mechanica, 16(2) (1985) 135-146.
[2]K. Xie, Y. Wang, H. Niu, H. Chen, Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method, Composite Structures, 246 (2020) 345-367.
[3]R. Kumhar, S. Kundu, M. Maity, S. Gupta, Analysis of interfacial imperfections and electro-mechanical properties on elastic waves in porous piezo-composite bars, International Journal of Mechanical Sciences, 187 (2020) 105-126.
[4]L.A.H. Kunbar, L.B. Hamad, R.A. Ahmed, N.M. Faleh, Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects, Smart Structures and Systems, 25(5) (2020) 619-630.
[5]S.S. Mirjavadi, M. Forsat, M.R. Barati, A. Hamouda, Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection, Steel and Composite Structures, 35(4) (2020) 567-578.
[6]E. Salari, S.S. Vanini, A. Ashoori, A. Akbarzadeh, Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis, International Journal of Mechanical Sciences, 178 (2020) 603-615.
[7]Y. Huo, S. Ren, Z. Wei, G. Yi, Standing Wave Binding of Hemispherical Resonator Containing First–Third Harmonics of Mass Imperfection under Linear Vibration Excitation, Sensors, 20(19) (2020) 38-54.
[8]H.B. Khaniki, M.H. Ghayesh, S. Hussain, M. Amabili, Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions, Engineering with Computers, 45 (2020) 1-27.
[9]X. Ma, Z. Su, Analysis and compensation of mass imperfection effects on 3-D sensitive structure of bell-shaped vibratory gyro, Sensors and Actuators A: Physical, 224 (2015) 14-23.
[10]B. Zhang, S. Liu, Y.C. Shin, In-Process monitoring of porosity during laser additive manufacturing process, Additive Manufacturing, 28 (2019) 497-505.
[11]W. Meng, Z. Li, F. Lu, Y. Wu, J. Chen, S. Katayama, Porosity formation mechanism and its prevention in laser lap welding for T-joints, Journal of Materials Processing Technology, 214(8) (2014) 1658-1664.
[12]A. Matsunawa, M. Mizutani, S. Katayama, N. Seto, Porosity formation mechanism and its prevention in laser welding, Welding international, 17(6) (2003) 431-437.
[13]R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate, Materials & Design, 199 (2021) 34-51.
[14]A. Sola, A. Nouri, Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, Journal of Advanced Manufacturing and Processing, 1(3) (2019) 87-95.
[15]D. Basu, Z. Wu, J.L. Meyer, E. Larson, R. Kuo, A. Rollett, Entrapped Gas and Process Parameter-Induced Porosity Formation in Additively Manufactured 17-4 PH Stainless Steel, Journal of Materials Engineering and Performance, 56 (2021) 1-8.
[16]A. Erturk, D.J. Inman, Piezoelectric energy harvesting, John Wiley & Sons, 2011.
[17]J. Choi, I. Jung, C.-Y. Kang, A brief review of sound energy harvesting, Nano energy, 56 (2019) 169-183.
[18]N.M. Monroe, J.H. Lang, Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model, Smart Materials and Structures, 28(5) (2019) 55-67.
[19]M.A. Pillai, E. Deenadayalan, A review of acoustic energy harvesting, International journal of precision engineering and manufacturing, 15(5) (2014) 949-965.
[20]H. Maiwa, Thermal energy harvesting of PLZT and BaTiO3 ceramics using pyroelectric effects, in: Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications, Elsevier, 2019, pp. 217-229.
[21]Q. Wang, C.R. Bowen, R. Lewis, J. Chen, W. Lei, H. Zhang, M.-Y. Li, S. Jiang, Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting, Nano Energy, 60 (2019) 144-152.
[22]S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting, Advanced Materials, 31(49) (2019) 23-45.
[23]C. Williamson, R. Govardhan, A brief review of recent results in vortex-induced vibrations, Journal of Wind engineering and industrial Aerodynamics, 96(6-7) (2008) 713-735.
[24]M.J. Wickett, S. Hindley, M.B. Wickett, WITT: Harvesting Energy From Subsea, Vortex-Induced Vibration, Marine Technology Society Journal, 53(4) (2019) 17-25.
[25]M. Gu, B. Song, B. Zhang, Z. Mao, W. Tian, The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder, Renewable Energy, 67 (2019) 67-78.
[26]L. Chen, S. Pan, Y. Fei, W. Zhang, F. Yang, Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting, Applied Physics A, 125(4) (2019) 242-253.
[27]H. Farokhi, A. Gholipour, M.H. Ghayesh, Efficient Broadband Vibration Energy Harvesting Using Multiple Piezoelectric Bimorphs, Journal of Applied Mechanics, 87(4) (2020) 45-56.
[28]A. Li, W. Zhao, S. Zhou, L. Wang, L. Zhang, Enhanced energy harvesting of cantilevered flexoelectric micro-beam by proof mass, AIP Advances, 9(11) (2019) 115305.
[29]Y. Zhang, S.C. Cai, L. Deng, Piezoelectric-based energy harvesting in bridge systems, Journal of intelligent material systems and structures, 25(12) (2014) 1414-1428.
[30]H. Dai, A. Abdelkefi, L. Wang, Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations, Nonlinear Dynamics, 77(3) (2014) 967-981.
[31]M. Radgolchin, H. Moeenfard, Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations, Smart Materials and Structures, 27(2) (2018) 12-24.
[32]A. Li, W. Zhao, S. Zhou, L. Wang, L. Zhang, Enhanced energy harvesting of cantilevered flexoelectric micro-beam by proof mass, AIP Advances, 9 (2019) 23-41.
[33]M. Zamanian, H. Rezaei, M. Hadilu, S. Hosseini, A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam, Smart Structures and Systems, 16(5) (2015) 891-918.
[34]A. Erturk, D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, Journal of vibration and acoustics, 130(4) (2008) 12-24.
[35]L. Qi, Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters, Energy, 171 (2019) 721-730.
[36]Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, X. Xu, Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells, International Journal of Mechanical Sciences, 151 (2019) 537-550.
[37]P. Jiao, A.H. Alavi, Buckling analysis of graphene-reinforced mechanical metamaterial beams with periodic webbing patterns, International Journal of Engineering Science, 131 (2018) 1-18.
[38]M.L. Facchinetti, E. De Langre, F. Biolley, Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and structures, 19(2) (2004) 123-140.
[39]E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric, Flinovia-Flow Induced Noise and Vibration Issues and Aspects, Springer, 2015.
[40]N. Shafiei, A. Mousavi, M. Ghadiri, On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams, International Journal of Engineering Science, 106 (2016) 42-56.
[41]R.D. Blevins, Flow-induced vibration 45 (1990) 34-50.
[42]H. Dai, L. Wang, Q. Qian, Q. Ni, Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes, Journal of Fluids and Structures, 39 (2013) 322-334.
[43]Y. Hu, B. Yang, X. Chen, X. Wang, J. Liu, Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration, Energy conversion and management, 162 (2018) 145-158.
[44]R. Song, X. Shan, F. Lv, T. Xie, A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension, Ceramics International, 41 (2015) S768-S773.
[45]A. Mehmood, A. Abdelkefi, M. Hajj, A. Nayfeh, I. Akhtar, A. Nuhait, Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder, Journal of Sound and Vibration, 332(19) (2013) 4656-4667.
[46]F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Piezoelectric buckled beams for random vibration energy harvesting, Smart materials and structures, 21(3) (2012) 34-54.
[47]A. Khatami, Response regime of nonlinear bistable energy harvester, Modares Mechanical Engineering, 18(5) (2018) 57-65.