[1] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials today, 15(3) (2012) 86-97.
[2] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, 4(4) (2009) 217-224.
[3] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, S. Franzese, Porosity-graded hydroxyapatite ceramics to replace natural bone, Biomaterials, 22(11) (2001) 1365-1370.
[4] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362(1-2) (2003) 40-60.
[5] R. Ansari, R. Hassani, R. Gholami, H. Rouhi, Buckling and Postbuckling of Plates Made of FG-GPL-Reinforced Porous Nanocomposite with Various Shapes and Boundary Conditions, International Journal of Structural Stability and Dynamics, 21(05) (2021) 2150063.
[6] H. Bisheh, A. Alibeigloo, M. Safarpour, A. Rahimi, Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method, International Journal of Applied Mechanics, 11(08) (2019) 1950073.
[7] R. Gholami, R. Ansari, Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates, Applied Mathematical Modelling, 65 (2019) 627-660.
[8] S. Blooriyan, R. Ansari, A. Darvizeh, R. Gholami, H. Rouhi, Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach, Applied Mathematics and Mechanics, 40(7) (2019) 1001-1016.
[9] M. Song, J. Yang, S. Kitipornchai, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composites Part B: Engineering, 134 (2018) 106-113.
[10] J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Composite Structures, 193 (2018) 281-294.
[11] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Composite Structures, 204 (2018) 831-846.
[12] C.T. Herakovich, Mechanics of composites: a historical review, Mechanics Research Communications, 41 (2012) 1-20.
[13] R. Szilard, Theories and applications of plate analysis: classical, numerical and engineering methods, Appl. Mech. Rev., 57(6) (2004) B32-B33.
[14] A. Ugural, Stresses in plates and shells, McGraw-Hill, 1999.
[15] J.N. Reddy, Energy principles and variational methods in applied mechanics, John Wiley & Sons, 2017.
[16] C. Wang, T.M. Aung, Plastic buckling analysis of thick plates using p-Ritz method, International Journal of Solids and Structures, 44(18-19) (2007) 6239-6255.
[17] Y. Hou, G. Wei, Y. Xiang, DSCāRitz method for the free vibration analysis of Mindlin plates, International Journal for Numerical Methods in Engineering, 62(2) (2005) 262-288.
[18] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh–Ritz method, International Journal for Numerical Methods in Engineering, 44(11) (1999) 1685-1707.
[19] B.N. Parlett, The symmetric eigenvalue problem, SIAM, 1998.
[20] D. Evans, J. Shanehchi, Implementation of an improved bisection algorithm in buckling problems, International Journal for Numerical Methods in Engineering, 19(7) (1983) 1047-1052.