[1] N.S. Lee, K.J. Bathe, Effects of element distortions on the performance of isoparametric elements, International Journal for numerical Methods in engineering, 36(20) (1993) 3553-3576.
[2] T.H. Pian, State-of-the-art development of hybrid/mixed finite element method, Finite elements in analysis and design, 21(1-2) (1995) 5-20.
[3] C. Felippa, Advanced finite element methods, Institute of Theoretical Physics, Faculty of Mathematics and Physics …, 2000.
[4] T.H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA journal, 2(7) (1964) 1333-1336.
[5] R.L. Spilker, S. Maskeri, E. Kania, Plane isoparametric hybrid‐stress elements: invariance and optimal sampling, International Journal for Numerical Methods in Engineering, 17(10) (1981) 1469-1496.
[6] T.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20(9) (1984) 1685-1695.
[7] X.R. Fu, S. Cen, C.F. Li, X.M. Chen, Analytical trial function method for development of new 8‐node plane element based on the variational principle containing Airy stress function, Engineering Computations, 27(4) (2010) 442-463.
[8] S. Cen, M.-J. Zhou, X.-R. Fu, A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions, Computers & Structures, 89(5-6) (2011) 517-528.
[9] S. Cen, X.-R. Fu, M.-J. Zhou, 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes, Computer Methods in Applied Mechanics and Engineering, 200(29-32) (2011) 2321-2336.
[10] C. Wang, Y. Wang, C. Yang, X. Zhang, P. Hu, 8-node and 12-node plane elements based on assumed stress quasi-conforming method immune to distorted mesh, Engineering Computations, 34(8) (2017) 2731-2751.
[11] S. Cen, G.H. Zhou, X.R. Fu, A shape‐free 8‐node plane element unsymmetric analytical trial function method, International Journal for Numerical Methods in Engineering, 91(2) (2012) 158-185.
[12] S. Cen, X. Fu, G. Zhou, M. Zhou, C. Li, Shape-free finite element method: the plane hybrid stress-function (HS-F) element method for anisotropic materials, Science China Physics, Mechanics and Astronomy, 54(4) (2011) 653-665.
[13] Y.-T. Zhao, M.-Z. Wang, Y. Chen, Y. Su, Polynomial stress functions of anisotropic plane problems and their applications in hybrid finite elements, Acta Mechanica, 223(3) (2012) 493-503.
[14] I. Herrera, Boundary methods: an algebraic theory, Pitman Advanced Publishing Program, 1984.
[15] Q.-H. Qin, Trefftz Finite Element Method and Its Applications, Applied Mechanics Reviews, 58(5) (2005) 316-337.
[16] M. Rezaiee-Pajand, M. Karkon, An effective membrane element based on analytical solution, European Journal of Mechanics-A/Solids, 39 (2013) 268-279.
[17] S. Ai-Kah, L. Yuqiu, C. Song, Development of eight-node quadrilateral membrane elements using the area coordinates method, Computational Mechanics, 25(4) (2000) 376-384.
[18] S. Cen, X.-M. Chen, X.-R. Fu, Quadrilateral membrane element family formulated by the quadrilateral area coordinate method, Computer Methods in Applied Mechanics and Engineering, 196(41-44) (2007) 4337-4353.
[19] G. Zhang, J. Xiang, Eight‐node conforming straight‐side quadrilateral element with high‐order completeness (QH8‐C1), International Journal for Numerical Methods in Engineering, 121(15) (2020) 3339-3361.
[20] S. Rajendran, K. Liew, A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field, International Journal for Numerical Methods in Engineering, 58(11) (2003) 1713-1748.
[21] G. Zhang, M. Wang, Development of eight-node curved-side quadrilateral membrane element using chain direct integration scheme (SCDI) in area coordinates (MHCQ8-DI), Arabian Journal for Science and Engineering, 44(5) (2019) 4703-4724.
[22] L. Yuqiu, X. Yin, Generalized conforming triangular membrane element with vertex rigid rotational freedoms, Finite elements in analysis and design, 17(4) (1994) 259-271.
[23] S.P. Timoshenko, J.N. Goodier, Theory of elasticity, (1951).
[24] R. Piltner, R. Taylor, A quadrilateral mixed finite element with two enhanced strain modes, International Journal for Numerical Methods in Engineering, 38(11) (1995) 1783-1808.