طراحی و پیاده‌سازی کنترل مود لغزشی با نیروی اصلاح‌شده برای آونگ وارون دارای اصطکاک غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

هدف از این مطالعه، ارایة روشی برای کنترل آونگ وارون در حضور اصطکاک غیر خطی بزرگ و نامعین بین پایة متحرک آونگ و ریل هادی مستقیم آن است. کنترل آونگ وارون که در زمرة سیستم‌های مکانیکی فروعملگر است، به لحاظ نظری و تجربی با چالش‌هایی مواجه است. روش ارائه‌شده در این مقاله، مبتنی بر خطی‌سازی تقریبی از ورودی تا خروجی و اعمال روش کنترل مود لغزشی همراه با اعمال یک نیروی کنترل اضافی به پایة متحرک آونگ است تا با اصطکاک‌های زیاد و غیر خطی بین پایة متحرک آونگ و ریل مقابله کند. برای بررسی تجربی، یک آونگ وارون آزمایشگاهی با پایة متحرک بر روی یک ریل مستقیم پر اصطکاک ساخته شد تا الگوریتم کنترلی پیشنهادی روی آن پیاده‌سازی شود. ریل به گونه‌ای طراحی و ساخته‌ شده است تا اصطکاک آن متغیر، نامعین و غیر خطی باشد. در ادامه، به روش تجربی، اطلاعاتی از رفتار و کران نیروی اصطکاک متغیر ناشناختة غیر خطی به دست آمد و بر اساس مقدار متوسط آن، ورودی کنترلی حاصل از کنترل‌کنندة مود لغزشی مرسوم اصلاح شده است. نتایج تجربی به دست آمده، موفقیت روش پیشنهادی را در حفظ پایداری حلقه-بسته تحت شرایط چالشی ناشی از اصطکاک غیر خطی بزرگ نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Implementation of Sliding Mode Control with the Modified Force for an Inverted Pendulum with Nonlinear Friction

نویسندگان [English]

  • Farbood ُShokouhi
  • Behnam Hoseinkhani
  • Amir Hossein Davaei Markazi
School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
چکیده [English]

The purpose of this study is to present a method for controlling an inverted pendulum in the presence of nonlinear and indeterminate friction force between the moving cart and its straight guide rail. Control of an Inverted pendulum, as an Under-actuated Mechanical System, is facing challenges from theoretical and experimental aspects. To deal with such challenges, a new method is proposed in this paper. The method is based on an approximate input-output linearization of the inverted pendulum dynamic model for which a modified sliding mode control is proposed. For experimental determination of the bound of friction force, an inverted pendulum with a moving cart is designed and built. The moving cart and its rail are intentionally designed and built such that the resulting friction force is nonlinear, uncertain, and state-varying. The upper bound of the friction force is obtained experimentally and its average value is added to the control input obtained from the conventional sliding mode controller. Experimental verifications depict the success of the proposed control method in preserving the closed-loop stability under the challenging case of dealing with a large nonlinear friction force.

کلیدواژه‌ها [English]

  • Sliding mode control
  • Inverted pendulum on cart
  • Constant rate reaching law
  • Nonlinear unknown variable friction
[1] D. Liu, W. Guo, J. Yi, Dynamics and GA-based stable control for a class of underactuated mechanical systems, International Journal of Control, Automation, and Systems, 6(1) (2008) 35-43.
[2] S.-J. Kim, S.-Y. Kim, I.-J. Ha, An efficient identification method for friction in single-DOF motion control systems, IEEE transactions on control systems technology, 12(4) (2004) 555-563.
[3] H. Olsson, K.J. Astrom, Friction generated limit cycles, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro,  (1996) 798-803.
[4] Y.Y. Lim, C.L. Hoo, Y.M.F. Wong, Stabilising an inverted pendulum with PID controller, MATEC Web of Conferences, 152 (2018) 02009.
[5] A. Çakan, F.M. Botsalı, M. Tınkır, Pid control of inverted pendulum using adams and matlab co-simulation, Proceedings of the 4th international conference on control, mechatronics and automation,  (2016) 136-139.
[6] I. Siradjuddin, M. Syafaat, T. Patma, S. Adhisuwignjo, T. Winarno, A. Komarudin, D. Widiatmoko, PID controller for a differential drive robot balancing system, Journal of Physics: Conference Series, 1402(4) (2019) 044021.
[7] K. Murari, I.F. Ahmed, I.P. Kumar, Modeling and analysis of an inverted pendulum, Engineering and Automation Problems, 2 (2017) 0.
[8] A. Sambo, F.S. Bala, N.M. Tahir, A. Babawuro, Optimal control of inverted pendulum on cart system, Journal of Physics: Conference Series, 1502(1) (2020) 012024.
[9] G. Ayhan, A. KaramancioĞlu, PID Control of an Inverted Pendulum with Experimental Friction Model Estimation, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5) (2021) 1078-1085.
[10] M. Waszak, R. Łangowski, An automatic self-tuning control system design for an inverted pendulum, IEEE Access, 8 (2020) 26726-26738.
[11] M. Czyżniewski, R. Łangowski, D. Klassa, M. Matwiszyn, A case study of robust sliding mode control applied to inverted pendulum on a cart, 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR),  (2021) 156-161.
[12] A. Mills, A. Wills, B. Ninness, Nonlinear model predictive control of an inverted pendulum, 2009 American control conference,  (2009) 2335-2340.
[13] K.-C. Schwab, Lennart SchrÄder, Paolo Mercorelli, and Jan Thore, Control of the Inverse Pendulum Based on Sliding Mode and Model Predictive Control, WSEAS Transactions on Systems and Control, 2 (2018) 529-536.
[14] E.S. Varghese, A.K. Vincent, V. Bagyaveereswaran, Optimal control of inverted pendulum system using PID controller, LQR and MPC, IOP Conference Series: Materials Science and Engineering, 263(5) (2017) 052007.
[15] S. Rudra, R.K. Barai, Robust adaptive backstepping control of inverted pendulum on cart system, International journal of control and automation, 5(1) (2012) 13-26.
[16] S. Irfan, A. Mehmood, M.T. Razzaq, J. Iqbal, Advanced sliding mode control techniques for inverted pendulum: Modelling and simulation, Engineering science and technology, an international journal, 21(4) (2018) 753-759.
[17] K. Sultan, A. Mirza, Inverted Pendulum, Analysis, Design and Implementation, Visionaries Document,  (2003).
[18] A. Banrejee, M. Nigam, Designing of proportional sliding mode controller for linear one stage inverted pendulum, Advances in Electrical and Electronic Engineering, 9(2) (2011) 84-89.
[19] F. Dai, X. Gao, S. Jiang, W. Guo, Y. Liu, A two-wheeled inverted pendulum robot with friction compensation, Mechatronics, 30 (2015) 116-125.
[20] M. Yue, X. Wei, Z. Li, Zero-dynamics-based adaptive sliding mode control for a wheeled inverted pendulum with parametric friction and uncertain dynamics compensation, Transactions of the Institute of Measurement and Control, 37(1) (2015) 91-99.
[21] R.H. Suarez, A.M. Diaz, N. Flores, E.H.M. Guzman, H. Puebla, High order sliding mode control for suppression of nonlinear dynamics in mechanical systems with friction, Sliding Mode Control,  (2011).
[22] C. Aguilar, Approximate feedback linearization and sliding mode control for the single inverted pendulum, Queen’s University,  (2002).
[23] J.-J.E. Slotine, L. Weiping, Applied Nonlinear Control,  (1991).
[24] F. Shokouhi, A.H. Davaie-Markazi, Control of Inverted Pendulum: A comparative study on sliding mode approaches, 2020 8th RSI International Conference on Robotics and Mechatronics (IcRoM),  (2020).
[25] Y. Tan, J. Chang, H. Tan, Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties, IEEE Transactions on Industrial Electronics, 50(5) (2003) 944-952.
[26] D. Park, D. Chwa, S.-K. Hong, An estimation and compensation of the friction in an inverted pendulum, 2006 SICE-ICASE International Joint Conference,  (2006) 779-783.