تحلیل رفتار کمانش تیر-ستون ماهیچه‌ای کامپوزیتی چند لایه با مقطع ناودانی تحت نیروی محوری و لنگر انتهایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

چکیده

امروزه، استفاده از المان‌های پوسته‌ای کامپوزیتی نظیر تیرهای ماهیچه‌ای با مقطع جدار نازک به دلیل قابلیت آن‌ها در مصرف بهینه مصالح و کاهش وزن سازه در بسیاری از صنایع از جمله هوا فضا، دریایی و خودرو سازی افزایش قابل توجهی یافته است. طراحی اعضای جدار نازک بایستی به گونه‌‌ای صورت پذیرد که پارامتر نسبت استحکام به وزن تا حد قابل قبولی بالا باشد تا از نظر صرفه‌‌جویی در مصرف مصالح و هزینه بهینه گردند. با توجه به این نکته در این تحقیق، پایداری خمشی-پیچشی تیر-ستون ماهیچه‌ای جدار نازک با نیم‌رخ ناودانی از جنس کامپوزیت الیافی تحت شرایط مرزی مختلف مورد بررسی قرار گرفته است. بدین منظور، انرژی پتانسیل کلی حاکم بر مسئله بر مبنای مدل ولاسو برای مقاطع جدار نازک باز، تئوری کلاسیک لایه‌ای و با فرض چیدمان متقارن استخراج می‌گردد. سپس با استفاده از روش تحلیلی رایلی-ریتز، مقدار بار کمانش خمشی-پیچشی با توجه به شرایط مرزی حاکم بر عضو محاسبه می‌شود. پس از تأیید صحت و دقت روش ارائه شده با استفاده از نرم افزار المان محدود انسیس، تاثیر عوامل مهمی مانند پیش بارگذاری محوری، خروج از مرکزیت بار محوری فشاری، جنس الیاف، چینش لایه‌ها، شرایط مرزی و ضرایب باریک‌شوندگی بال و جان بر ظرفیت کمانشی عضو کامپوزیتی مدنظر بررسی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Buckling analysis of tapered laminated composite channel-section beam-columns subjected to combined axial load and end moment

نویسندگان [English]

  • Reza Abolghasemian 1
  • Masoumeh Soltani 2
  • Ahmad Reza Ghasemi 1
1 Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
2 Department of Civil Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
چکیده [English]

Nowadays, the practical applications of shell elements such as beams having thin-wall cross-sections are increasing greatly in various fields of engineering including aerospace, nuclear, marine, and automotive industries. This is due to their ability to optimally use structural materials and simultaneously reduce the total weight of the structure. Fiber polymer composites also have different conspicuous properties such as high stiffness-to-weight and strength-to-weight ratios, corrosion resistance, and high strength. Therefore, laminated composite C-section beam elements simultaneously possess both the beneficial features of fiber-reinforced composite materials and thin-walled cross-sections at the same time. Motivated by these facts, in this research, the flexural-torsional stability of multi-layer fibrous composite tapered beam-columns with channel-section subjected to axial and bending loads is investigated. For this purpose, the total potential energy governing the problem is extracted based on Vlasov’s model for small non-uniform torsion along with the classical laminated plate theory. Then, using Ritz’s methodology as an analytical solution technique, the endurable buckling load is calculated. Eventually, the effect of important parameters such as stacking sequences, fiber composite materials, boundary conditions, axial load eccentricity, and axial preloading on the linear buckling capacity of double-tapered multi-layer composite beam-column with channel-section under axial load and end moment is investigated.

کلیدواژه‌ها [English]

  • Flexural-torsional stability
  • Composite tapered member
  • C-shaped cross-section
  • Classical lamination theory
  • Ritz’s method
[1] B. Asgarian, M. Soltani, F. Mohri, Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections, Thin-walled structures, 62 (2013) 96-108.
[2] S.S. Cheng, B. Kim, L.Y. Li, Lateral–torsional buckling of cold-formed channel sections subject to combined compression and bending, Journal of Constructional Steel Research, 80 (2013) 174-80.
[3] M. Soltani, B. Asgarian, F. Mohri, Elastic instability and free vibration analyses of tapered thin-walled beams by the power series method, Journal of constructional steel research, 96 (2014) 106-126.
[4] M. Soltani, B. Asgarian, F. Mohri, Finite element method for stability and free vibration analyses of non-prismatic thin-walled beams, Thin-Walled Structures, 82 (2014) 245-261.
[5] J. Kuś, Lateral-torsional buckling steel beams with simultaneously tapered flanges and web, Steel and Composite Structures, 19(4) (2015) 897-916.
[6] A.R. Ghasemi, F. Taheri-Behrooz, S.M.N. Farahani, M. Mohandes, Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions, Journal of Vibration and Control, 22(3) (2016) 799-811.
[7] A. Saoula, S.A. Meftah, F. Mohri, Lateral buckling of box beam elements under combined axial and bending loads, Journal of Constructional Steel Research, 116 (2016) 141-155.
[8] T.T. Nguyen, J. Lee, Optimal design of thin-walled functionally graded beams for buckling problems, Composite Structures, 179 (2017) 459-467.
[9] P. Jiao, W. Borchani, S. Soleimani, B. McGraw, Lateral-torsional buckling analysis of wood composite I-beams with sinusoidal corrugated web, Thin-Walled Structures, 119 (2017) 72-82.
[10] T.T. Nguyen, N.I. Kim, J. Lee, Free vibration of thin-walled functionally graded open-section beams, Composites Part B: Engineering, 95 (2016) 105-116.
[11] T.T. Nguyen, P.T. Thang, J. Lee, Lateral buckling analysis of thin-walled functionally graded open-section beams, Composite structures, 160 (2017) 952-963.
[12] T.T. Nguyen, J. Lee, Interactive geometric interpretation and static analysis of thin-walled bi-directional functionally graded beams, Composite structures, 191 (2018) 1-11.
[13] N.D. Nguyen, T.K. Nguyen, T.P. Vo, T.N. Nguyen, S. Lee, Vibration and buckling behaviours of thin-walled composite and functionally graded sandwich I-beams, Composites Part B: Engineering, 166 (2019) 414-427.
[14] T.T. Nguyen, J. Lee, Flexural-torsional vibration and buckling of thin-walled bi-directional functionally graded beams, Composites part b: engineering, 154 (2018) 351-362.
[15] D. Banat, R.J. Mania, Failure assessment of thin-walled FML profiles during buckling and postbuckling response, Composites Part B: Engineering, 112 (2017) 278-289.
[16] D. Banat, R.J. Mania, Progressive failure analysis of thin-walled Fibre Metal Laminate columns subjected to axial compression, Thin-Walled Structures, 122 (2018) 52-63.
[17] D. Banat, R.J. Mania, Stability and strength analysis of thin-walled GLARE composite profiles subjected to axial loading, Composite Structures, 212 (2019) 338-345.
[18] M. Rezaiee-Pajand, A.R. Masoodi, A. Alepaighambar, Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing, Steel and Composite Structures, An International Journal, 28(4) (2018) 403-414.
[19] M. Soltani, B. Asgarian, F. Mohri, Improved finite element model for lateral stability analysis of axially functionally graded nonprismatic I-beams, International Journal of Structural Stability and Dynamics, 19(9) (2019) 1950108.
[20] M. Soltani, Flexural-torsional stability of sandwich tapered I-beams with a functionally graded porous core, Journal of Numerical Methods in Civil Engineering, 4(3) (2020) 8-20.
[21] M. Soltani, A. Soltani, An analytical solution for stability analysis of unrestrained tapered thin-walled FML profile, Journal of Numerical Methods in Civil Engineering, 6(1) (2021) 50-62.
[22] R. Abolghasemian, M. Soltani, A.R. Ghasemi, Investigation of lateral-torsional buckling of laminated composite thin-walled beam subjected to different boundary conditions,2nd International Conference on Industrial Application of Advanced Materials and Manufacturing, July, 2022, Tehran, Iran. (in Persian)
[23] V.Z. Vlasov, Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem (1961).
[24] Z. P. Bazant, L. Cedolin, Stability of structures. Elastic, Inelastic, Fracture and Damage Theories. (New York, Dover Publications, 1991).
[25] F. Mohri, L. Azrar, M. Potier-Ferry, Lateral post-buckling analysis of thin-walled open section beams, Thin-Walled Structures, 40(12) (2002) 1013-1036.
[26] J. Lee, S.E. Kim, K. Hong, Lateral buckling of I-section composite beams, Engineering Structures, 24(7) (2002) 955-964.
[27] A. Andrade, D. Camotim, P. Providência e Costa, On the evaluation of elastic critical moments in doubly and singly symmetric I-section cantilevers, Journal of Constructional Steel Research, 63(7) (2007) 894-908.
[28] A. Andrade, D. Camotim, P. Borges Dinis, Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams, 1D model vs. shell FEA, Computers & Structures, 85(17-18) (2007) 1343-1359.
[29] I.G. Raftoyiannis, T. Adamakos, Critical lateral-torsional buckling moments of steel web-tapered I-beams, The Open Construction & Building Technology Journal, 4(1) (2010).
[30] A. Osmani, S.A. Meftah, Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed, Engineering Structures, 165 (2018) 76-87.
[31] P. Qiao, G. Zou, J.F. Davalos, Flexural–torsional buckling of fiber-reinforced plastic composite cantilever I-beams, Composite Structures, 60(2) (2003) 205-217.
[32] S.P. Machado, V.H. Cortínez, Non-linear model for stability of thin-walled composite beams with shear deformation, Thin-Walled Structures, 43(10) (2005) 1615-1645.
[33] S.P. Machado, V.H. Cortínez, Free vibration of thin-walled composite beams with static initial stresses and deformations, Engineering Structures, 29(3) (2007) 372-382.
[34] F. Bleich, Buckling strength of metal structures. New York: McGraw-Hill; 1952.
[35] J. Lee, S.E. Kim, Lateral buckling analysis of thin-walled laminated channel-section beams, Composite Structures, 56(4) (2002) 391-399.
[36] ANSYS, Version 15, Swanson Analysis System, Inc, Canonsburg, PA, USA, (2013).