[1] A. Raj, J. A. Kumar, and P. Bansal, A multicriteria decision-making approach to study barriers to the adoption of autonomous vehicles, Transp Res Part A, Policy Pract, 133 (2020) 122-137.
[2] T. Liu, B. Tian, Y. Ai, L. Chen, F. Liu, and D. Cao, Dynamic states prediction in autonomous vehicles: Comparison of three different methods, IEEE Intell Transp Syst Conf (ITSC), (2019) 3750-3755.
[3] A. Rasouli and J. K. Tsotsos, Autonomous vehicles that interact with pedestrians: A survey of theory and practice, IEEE Trans Intell Transp Syst, 21(3) (2020) 900-918.
[4] C. Gkartzonikas and K. Gkritza, What have we learned? A review of stated preference and choice studies on autonomous vehicles, Transp Res Part C, Emerg Technol., 98 (2019) 323-337.
[5] C.J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochenderfer, Combining planning and deep reinforcement learning in tactical decision making for autonomous driving, IEEE Trans Intell Vehicles, 5(2) (2020) 294-305.
[6] C. Yang, Y. Shi, L. Li, and X. Wang, Efficient mode transition control for a parallel hybrid electric vehicle with adaptive dual-loop control framework, IEEE Trans Veh Technol, 69(2) (2020) 1519-1532.
[7] C.-J. Hoel, K. Wolff, and L. Laine, Tactical decision-making in autonomous driving by reinforcement learning with uncertainty estimation, IEEE Intelligent Vehicles Symposium (IV), (2020) 1292-1298.
[8] SAE On-Road Automated Vehicle Standards Committee, Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems, SAE Standard J, 3016, (2014) 1-16.
[9] Qin, Y., Tang, X., Jia, T., Duan, Z., Zhang, J., Li, Y., & Zheng, L., Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges, Renewable and Sustainable Energy Reviews, 124, (2020) 109782.
[10] Hart, P., & Knoll, A., Using counterfactual reasoning and reinforcement learning for decision-making in autonomous driving, Journal of Autonomous Vehicles, 15(2), (2020) 123-145.
[11] W. Song, G. Xiong, H. Chen, Intention-aware autonomous driving decision-making in an uncontrolled intersection, Math Problems Eng, (2016) 1-15.
[12] Yang, C., You, S., Wang, W., Li, L., & Xiang, C, A stochastic predictive energy management strategy for plug-in hybrid electric vehicles based on fast rolling optimization, IEEE Transactions on Industrial Electronics, 67(11), (2020) 9659-9670.
[13] Furda, A., & Vlacic, L., Enabling safe autonomous driving in real-world city traffic using multiple criteria decision-making, IEEE Intelligent Transportation Systems Magazine, 3(1), (2011) 4-17.
[14] Nie, J., Zhang, J., Ding, W., Wan, X., Chen, X., & Ran, B, Decentralized cooperative lane-changing decision-making for connected autonomous vehicles, IEEE Access, 4, (2016) 9413-9420.
[15] Li, L., Ota, K., & Dong, M, Humanlike driving: Empirical decision-making system for autonomous vehicles, IEEE Transactions on Vehicular Technology, 67(8), (2018) 6814-6823.
[16] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D., Human-level control through deep reinforcement learning, Nature, 518(7540), (2015) 529-533.
[17] Duan, J., Li, S. E., Guan, Y., Sun, Q., & Cheng, B., Hierarchical reinforcement learning for self-driving decision-making without reliance on labeled driving data, IET Intelligent Transportation Systems, 14(5), (2020) 297-305.
[18] Kim, M., Lee, S., Lim, J., Choi, J., & Kang, S. G., Unexpected collision avoidance driving strategy using deep reinforcement learning, IEEE Access, 8, (2020) 17243-17252.
[19] Hang, Q., Lin, J., Sha, Q., He, B., & Li, G., Deep interactive reinforcement learning for path following of autonomous underwater vehicle, IEEE Access, 8, (2020) 24258-24268.
[20] Chen, C., Jiang, J., Lv, N., & Li, S., An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement learning on the network edge, IEEE Access, 8, (2020) 99059-99069.
[21] Yang, C., Zha, M., Wang, W., Liu, K., & Xiang, C, Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system, IET Intelligent Transportation Systems, 14(7), (2020) 702-711.
[22] Han, S., & Miao, F., Behavior planning for connected autonomous vehicles using feedback deep reinforcement learning, Journal of Autonomous Systems, 10(3), (2020) 112-134.
[23] Nageshrao, S., Tseng, H. E., & Filev, D, Autonomous highway driving using deep reinforcement learning, In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2019) 2326-2331.
[24] Li, G., Yang, Y., Zhang, T., Qu, X., Cao, D., Cheng, B., & Li, K, Risk assessment-based collision avoidance decision-making for autonomous vehicles in multi scenarios, Transportation Research Part C: Emerging Technologies, 122, (2021) 102820.
[25] Li, G., Yang, L., Li, S., Luo, X., Qu, X., & Paul, G., Human-like decision-making of artificial drivers in intelligent transportation systems: An end-to-end driving behavior prediction approach, IEEE Intelligent Transportation Systems Magazine, 14(1), (2022) 24-36.
[26] Duan, J., Guan, Y., Li, S. E., Ren, Y., & Cheng, B., Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors, IEEE Transactions on Neural Networks and Learning Systems, 33(5), (2022) 2345-2357.
[27] Li, G., Li, S., Li, S., & Qu, X., Continuous decision-making for autonomous driving at intersections using deep deterministic policy gradient, IET Intelligent Transportation Systems, 16(2), (2021) 1669-1681.
[28] Liu, T., Huang, B., Deng, Z., Wang, H., Tang, X., Wang, X., & Cao, D., Heuristics-oriented overtaking decision making for autonomous vehicles using reinforcement learning, IET Electrical Systems in Transportation, 1(99), (2020) 1-8.
[29] Treiber, M., Hennecke, A., & Helbing, D., Congested traffic states in empirical observations and microscopic simulations, Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 62(2), (2000) 1805-1824.
[30] Zhou, M., Qu, X., & Jin, S., On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach, IEEE Transactions on Intelligent Transportation Systems, 18(6), (2017) 1422-1428.
[31] Kesting, A., Treiber, M., & Helbing, D, General lane-changing model MOBIL for car-following models, Transportation Research Record: Journal of the Transportation Research Board, 1999(1), (2007) 86-94.
[32] Liu, T., Hu, X., Hu, W., & Zou, Y, A heuristic planning reinforcement learning-based energy management for power-split plug-in hybrid electric vehicles, IEEE Transactions on Industrial Informatics, 15(12), (2019) 6436-6445.
[33] Liu, T., Tang, X., Wang, H., Yu, H., & Hu, X, Adaptive hierarchical energy management design for a plug-in hybrid electric vehicle, IEEE Transactions on Vehicular Technology, 68(12), (2019) 11513-11522.
[34] Hu, X., Liu, T., Qi, X., & Barth, M, Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and prospects, IEEE Industrial Electronics Magazine, 13(3), (2019) 16-25.
[35] Liu, T., Yu, H., Guo, H., Qin, Y., & Zou, Y, Online energy management for multimode plug-in hybrid electric vehicles, IEEE Transactions on Industrial Informatics, 15(7), (2019) 4352-4361.
[36] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Hoboken, NJ, USA: Wiley, 2014.
[37] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, Dueling network architectures for deep reinforcement learning, in Proc ICML, (2016) 1995-2003.