[1] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54 (1983) 4703-4710.
[2] L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of Applied Physics 94 (2003) 7281-7287.
[3] R. Ansari, S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science 49 (2011) 1244-1255.
[4] D. Kumar, C. Heinrich, A.M. Waas, Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories, Journal of Applied Physics 103 (2008) 073521.
[5] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45 (2007) 288-307.
[6] M.A. Eltaher, A. Khairy, A.M. Sadoun, Omar Fatema-Alzahraa, Static and buckling analysis of functionally graded Timoshenko nanobeams, Applied Mathematics and Computation 229 (2014) 283-295.
[7] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 41 (2009) 1651-1655.
[8] C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics 39 (2006) 3904-3909.
[9] C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocal Timoshenko beams, Nanotechnology 18(2007) 105401.
[10] J.K. Phadikar, S.C. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational Materials Science 49 (2010) 492-499.
[11] T. Murmu, S.C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E 41 (2009)1232-1239.
[12] J. Yang, L.L. Ke, S. Kitipornchai, Nonlinear free vibration of SWCNTs using nonlocal Timoshenko beam theory, Physica E 42 (2010) 1727-1735.
[13] H.T. Thai, A nonlocal beam theory for bending,buckling, and vibration of nanobeams, International Journal of Engineering Science 52 (2012) 56-64.
[14] A.H. Rahmati, M. Mohamadimehr, Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM, Physica B: Condensed Matter 440 (2014) 88-98.
[15] M.H. Yas, N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, International Journal of Pressure Vessels and Piping 98 (2012)119-128.
[16] A. Ghorbanpour Arani, S. Amir, A.R. Shajari, M.R. Mozdianfard, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory, Composite Part B: Engineering 43 (2012) 195-203.
[17] A. Ghorbanpour Arani, V. Atabakhshian, A. Loghman, A.R. Shajari, S. Amir, Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Physica B 407 (2012) 2549-2555.
[18] M. Mohammadimehr, B. Rousta Navi, A. Ghorbanpour Arani, Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FGSWCNTs using MSGT, sinusoidal shear deformation theory and meshless method, Composite Structures 131(2015) 654-671.
[19] A. Salehi-Khojin, N. Jalili, Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings, Composites Science and Technology 68 (2008)1489-1501.
[20] M. Mohammad Abadi, A.R. Daneshmehr, An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler- Bernoulli and Timoshenko beams, International Journal of Engineering Science 75 (2014) 40-53.
[21] W. Chen, C. Weiwei , K.Y. Sze, A model of composite laminated Reddy beam based on a modified couple stress theory", Composite Structures 94 (2012) 2599- 2609.
[22] H.S. Shen, C.L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Material and Design 31 (2010) 3403-3411.
[23] L.L. Ke, J. Yang, S. Kitipornchai, M.A. Bradford,Bending, buckling and vibration of size-dependent functionally graded annular microplates, Composite Structures 94 (2012) 3250-3257.
[24] M. Mohammadimehr, A. R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, Q. Han , Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using nonlocal Timoshenko beam theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 ( 2) (2011) 498-506.
[25] C. Shu , Differential Quadrature and its Application in Engineering, Springer, London, 2000.
[26] C. Shu, H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, J of Sound and Vibration 34 (1997) 819-835.
[27] M. Mohammadimehr, A. A. Monajemi, M. Moradi, Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM, Journal of Mechanical Science and Technology 29 ( 6) (2015) 2297-2305.
[28] M. Mohammadimehr, M. Salemi, B. Rousta Navi,Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydro-thermo-mechanical loadings using DQM, Composite Structures 138 (2016) 361-380.