[1] Zener, C., 1937. “Internal friction in solids I. Theory of internal friction in reeds”, Physical Review, 52, pp. 230-235.
[2] Zener, C., 1938. “Internal friction in solids II. General theory of thermoelastic internal friction”, Physical Review, 53, pp. 90-99.
[3] Zener, C., Otis, W., Nuckolls, R., 1938. “Internal friction in solids III. Experimental demonstration of thermoelastic
internal friction”, Physical Review, 53, pp. 100-101.
[4] Berry, B.S., 1955. “Precise investigation of the theory of damping by transverse thermal currents”, Journal of Applied Physics, 26, pp. 1221-1224.
[5] Roszhardt, R.V., 1990. “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators”,
IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, pp. 13-16.
[6] Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman,T., Kenny, T.W., Stipe, B.C., Rugar, D., 2000. “Quality
Factors in Micron- and Submicron-thick Cantilevers”,Journal of Microelectromechanical Systems, Vol. 9, 1, pp.117-125.
[7] Lifshitz, R., 2002. “phonon-mediated dissipation in microand nano-mechanical systems”, Physica B, 316/317, pp.
397–399.
[8] Sun, Y.X., Fang, D.N., Soh, A.K., 2006. “Thermoelastic damping in micro- beam resonators”, International Journal of Solids and Structures, 43, pp. 3213-3229.
[9] Wong, S.J., Fox, C.H.J., Mc William, S., 2006.“Thermoelastic damping of the in-plane vibration of thin silicon rings”, Journal of Sound and Vibration, 293, pp.266-285.
[10] Zamanian, M., Khadem, S.E., 2010. “Analysis of thermoelastic damping in microresonators by considering
the stretching effect”, International Journal of Mechanical Sciences, 52, pp. 1366–1375.
[11] Sun, Y., Saka, M., 2010. “Thermoelastic damping in micro-scale circular plate resonators”, Journal of Sound and Vibration, 329, pp. 328–337.
[12] Li, P., Fang, Y., Hu, R., 2012. “Thermoelastic damping in rectangular and circular microplate resonators”, Journal
of Sound and Vibration, 331, pp. 721–733.
[13] Prabhakar, S., Païdoussis, M.P., Vengallatore, S., 2009.“Analysis of frequency shifts due to thermoelastic coupling
in flexural-mode micromechanical and nanomechanical resonators”, Journal of Sound and Vibration, 323, pp.385–396
[14] Hetnarski, R., Eslami, M. R., 2009. Thermal Stresses –Advanced Theory and Applications, springer, Heidelberg.
[15] Sadd, M.H., 2005. Elasticity- Theory, Applications, and Numerics, Elsevier, New York.
[16] Nayfeh, A., Younis, M.I., 2004. “Modeling and simulations of thermoelastic damping in microplates”,Journal of Micromachanics and Microengineering, 14,pp. 1711-1717.
[17] Song,Y., Bhushan, B., 2008. “Atomic force microscopy dynamic modes: modeling and applications”, J. Phys.:
Condens. Matter, 20, pp. 225012-41.
[18] James, M.L., Smith, G.M., Wolford, J.C., Whaley, P.W.,1989. Vibration of Mechanical and Structural Systems with Micro computer Applications, Harper and Row,NewYork.