Analytical investigation of energy absorption of sandwich panels with honeycomb core

Document Type : Research Article

Authors

Abstract

Abstract of "Analytical investigation of energy absorption of sandwich panels with honeycomb core"
In this paper, a new analytical model has been presented for energy absorption of aluminum-foam sandwich panels under ballistic impact. The panels consist of hexagonal honeycomb core sandwiched between two aluminum skins. In analytical model cylindrical rigid projectile with flat ended has been considered. In the quasi-static loading, by using the springs-mass model, energy absorption of Aluminum skins with considering difference energy absorption mechanisms calculated. Energy absorption of honeycomb has been determined by wierzbicki model. Energy balancing equation has been employed for determination the ballistic limit and residual velocity of striker. The results of ballistic limit and residual velocity of striker computed by new model have good agreement with experimental results. Also the effects of projectile mass and diameter and cell diameter of honeycomb in energy absorption of sandwich panel has been investigated.
Keywords: sandwich panel, Honeycomb, Aluminum, perforation, energy absorption.

Keywords

Main Subjects


[1] Hoo Fatt, M.S.; K.S. Park, 2000. “Perforation of honeycomb sandwich plates by projectiles”,
Composites Part A: Applied Science and Manufacturing, 31, No. 8, pp. 889-899.
[2] Backman, M.E.; W. Goldsmith, 1978 . “The mechanics of penetration of projectiles into targets”,International Journal of Engineering Science, 16,No. 1, pp. 1-99.
[3] Corbett, G.G.; S.R. ReidW. Johnson, 1996. “Impact loading of plates and shells by free-flying projectiles:
A review”, International Journal of Impact Engineering, 18, No. 2, pp. 141-230.
[4] Forrestal, M.J.; K. OkajimaV.K. Luk, 1988. “Penetration of 6061-T651 aluminum targets with
rigid long rods”, Applied Mechanics, 55, No. pp.755-760.
[5]رادمهر، داود؛ لیاقت، غلامحسین؛ فعلی، سعید؛ ”تحلیلفرایندنفوذمایلپرتابههایتغییرشکلپذیردراهداففلزیچندلایه“، نشریه مواد
پرانرژی، دوره 11 ، شماره 7، صفحات 21 - 31 ، 1390 .
[6] Mc Farland, R.K., 1963. “Hexagonal cell structures under post-buckling axial load”, AIAA Journal, 1,No. 6, pp. 1380-1385.
[7] Wierzbicki, T., 1983. “Crushing analysis of metal honeycombs”, International Journal of Impact Engineering, 1, No. 2, pp. 157-174.
[8]لیاقت، غلامحسین؛ صدیقی، مجتبی؛ داغیانی، حمیدرضا؛ علوی نیا، علی؛ ” خرد شدنسازههایلانهزنبوریفلزتحتبارهایشبهاستاتیکی“،نشریه دانشکده فنی، دوره 37 ، شماره 1، صفحات 145 - 186 ، 1382 .
[9] Goldsmith, W.; D.L. Louie, 1995. “Axial perforation of aluminum honeycombs by projectiles”,International Journal of Solids and Structures, 32,No. 8–9, pp. 1017-1046.
[10] Liaghat, G.H.; A.A. Nia; H.R. DaghyaniM. Sadighi,2010. “Ballistic limit evaluation for impact of
cylindrical projectiles on honeycomb panels”, Thin-Walled Structures, 48, No. 1, pp. 55-61.
[11] Sabouri, H.; G.H. Liaghat, 2010. “Comments on the article: “Ballistic impact of GLARE™ fiber–metal
laminates”, by Michelle S. Hoo Fatt, Chunfu Lin,Duane M. Revilock Jr., Dale A. Hopkins [Composite
Structures 61 (2003) 73–88]”, Composite Structures, 92, No. 2, pp. 600-601.
[12] Hoo Fatt, M.S.; D. Sirivolu, 2010. “A wave propagation model for the high velocity impact response of a composite sandwich panel”,International Journal of Impact Engineering, 37, No.2, pp. 117-130.
[13]ضیاء شمامی، مجتبی؛ خدارحمی، حسین؛ واحدی، خداداد؛ پل، محمدحسین؛” بررسیتجربیوعددینفوذپرتابهصلبسرتختدرسازه
ساندویچیباهستهفومآلومینیوم“، نشریه مهندسی مکانیک مدرس،دوره 13 ، شماره 5، صفحات 1- 13 ، 1392 .
[14] Feli, S.; M.H. Namdari Pour, 2012. “An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact”,Composites Part B: Engineering, 43, No. 5, pp. 2439-2447.
[15]فعلی، سعید؛ جعفری، سید سجاد؛ ” بررسیتحلیلیسوراخشدنورقهایساندویچیآلومینیوم-فومتحتاثرضرببالستیک“،نشریه مهندسی مکانیک مدرس ، دوره 13 ، شماره 6، صفحات 52 - 59 ، 1392 .
[16] Hazizan, M.A.; W.J. Cantwell, 2003. “The low velocity impact response of an aluminium honeycomb sandwich structure”, Composites Part B:Engineering, 34, No. 8, pp. 679-687.
[17] Goldsmith, W.; G.-T. Wang; K. LiD. Crane,1997. “Perforation of cellular sandwich plates”,International Journal of Impact Engineering, 19, No.5–6, pp. 361-379.
[18] Lin, C.; M.S.H. Fatt, 2006. “Perforation of composite plates and sandwich panels under quasistatic and projectile loading”, Journal of composite materials, 40, No. 20, pp. 1801-1840.
[19] Wen, H.; T. Reddy; S. ReidP. Soden, 1997.“Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading”, Key Engineering Materials, 141, No. pp. 501-552.
[20] Wu, Q.G.; H.M. Wen; Y. QinS.H. Xin, 2012.“Perforation of FRP laminates under impact by flatnosed
projectiles”, Composites Part B: Engineering,43, No. 2, pp. 221-227.
[21] Shivakumar, K.N.; W. ElberW. IIIG, 1985.“Prediction of impact force and duration due to low velocity impact on circular composite laminates”,Applicatiom Mechanic, 52, No. 3, pp. 674-680.
[22] Timoshenko, S.; S. Woinowsky-KriegerS.Woinowsky, Theory of plates and shells. 2. 1959:McGraw-hill New York.
[23] Łukasiewicz, S., 1976. “Introduction of concentrated loads in plates and shells”, Progress in Aerospace
Sciences, 17, No. pp. 109-146.
[24] Woodward, R.L.; M. De Morton, 1976. “Penetration of targets by flat-ended projectiles”, International
Journal of Mechanical Sciences, 18, No. 3, pp. 119-127.
[25] Hou, W.; F. Zhu; G. LuD.-N. Fang, 2010. “Ballistic impact experiments of metallic sandwich panels with
aluminium foam core”, International Journal of Impact Engineering, 37, No. 10, pp. 1045-1055.
[26] نامداری پور، محمدهادی؛ ”تحلیلصفحاتساندویچیلانهزنبوری-کامپوزیتتحتبارضربهایعمودی“، کارشناسی ارشد، کرمانشاه، دانشگاه رازی، 1390 .
[27] Forrestal, M.J.; V.K. LukN.S. Brar, 1990.“Perforation of aluminum armor plates with conicalnose
projectiles”, Mechanics of Materials, 10, No.1–2, pp. 97-105.
[28] Forrestal, M.J.; K. OkajimaV.K. Luk, 1988.“Penetration of 6061-T651 Aluminum Targets With Rigid Long Rods”, Journal of applied mechanics, 55,No. 4, pp. 755-760.