[1] حسین زاده کاشان، علی؛ “ارائه حدود بالا و پایین برای مسائل زمانبندی تک ماشین و جریان کارگاهی در سیستمهای تولید انباشتهای با فرض وجود نیازمندی ظرفیتی متفاوت برای کارها”. رساله دکتری مهندسی صنایع، دانشگاه صنعتی امیرکبیر، 1388
[2] Azizoglu, M.; Webster, S.; “Scheduling a batch processing machine with incompatible job families”. Computers & Industrial Engineering, vol. 39, p.p. 325-335, 2000.
[3] Boudhar, M.; Finke, G.; “Scheduling on a batch machine with job compatibilities”, Belgian Journal of Operations Research, Statistics and Computer Science, vol. 40, p.p. 69–80, 2000.
[4] Chang, P.Y.; Damodaran, P.; Melouk, S.; “Minimizing makespan on parallel batch processing machines”, International Journal of Production Research, vol. 42, p.p. 4211-4220, 2004.
[5] Damodaran, P., Chang, P.Y.; “Heuristics to minimize makespan of parallel batch processing machines”, International Journal of Advance Manufacturing Technology, vol. 37, p.p. 1005-1013, 2008.
[6] Damodaran, P.; Manjeshwar, P.K.; Srihari, K.; “Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms”, International journal of production economics, vol. 103, p.p. 882-891, 2006.
[7] Damodaran, P.; Srihari, K.; “Mixed integer formulation to minimize makespan in flow shop with batch processing machines”. Mathematical and Computer Modeling, vol. 40, p.p. 1465-1472, 2004.
[8] Dobson, G.; Nambimadom, R.S.; “The batch loading and scheduling problem”, Research Report, Simon School of Business Administration. University of Rochester, Rochester, NY, 1992.
[9] Dupont, L.; Dhaenens-Flipo, C.; “Minimizing the makespan on a batch machine with non-identical job sizes: an exact procedure”, Computers & Operations Research, vol. 29, p.p. 807-819,2002.
[10] Dupont, L.; Jolai Ghazvini, F.; “Minimizing Makespan on a Single Batch Processing Machine with Non identical Job Sizes”, European journal of Automation Systems, vol. 32, p.p. 431-440, 1998.
[11] Husseinzadeh Kashan, A.; Karimi, B.; “Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: an ant colony framework”, Journal of the Operational Research Society, vol. 59, p.p. 1269-1280, 2008.
[12] Husseinzadeh Kashan, A.; Karimi, B.; “An improved mixed integer linear formulation and several lower bounds for minimizing makespan on a flowshop with batch processing machines”, International Journal of Advanced manufacturing Technology, vol. 40, p.p. 582-594, 2009.
[13] Husseinzadeh Kashan, A.; Karimi, B.; Fatemi Ghomi, S.M.T.; “A note on: Minimizing makespan on a single batch processing machine with non-identical job sizes”, Theoretical Computer Science, vol. 410, p.p. 2754-2758, 2009.
[14] Husseinzadeh Kashan, A.; Karimi, B.; Jenabi, M.; “A hybrid genetic heuristic for scheduling parallel batch processing machines with arbitrary job sizes”, Computers & Operations Research, vol. 35, p.p. 1084-1098, 2008.
[15] Husseinzadeh Kashan, A.; Karimi, B.; Jolai, F.; “Effective hybrid genetic algorithm for minimizing makespan on a single-batch-processing machine with non-identical job sizes”, International Journal of Production Research, vol. 44, p.p. 2337-2360, 2006.
[16] Husseinzadeh Kashan, A.; Karimi, B.; Jolai, F.; “An effective hybrid multi-objective genetic algorithm for bi-criteria scheduling on a single batch processing machine with non-identical job sizes”. Engineering Applications of Artificial Intelligence, vol. 23, p.p. 911-922, 2010.
[17] Koh, S.G.; Koo, P.H.; Kim, D.C.; Hur, W.S.; “Scheduling a single-batch-processing machine with arbitrary job sizes and incompatible job families”, International Journal of Production Economics, vol. 98, p.p. 81–96, 2005.
[18] Lee, C.Y.; Uzsoy, R.; Martin-Vega, L.A.; “Efficient Algorithms for Scheduling Semiconductor Burn-in Operations”, Operations Research, vol. 40, p.p. 764-775, 1992.
[19] Liao L.M.; Huang, C.J.; “Tabu search heuristic for two-machine flowshop with batch processing machines”, Computers & Industrial Engineering, In Press, 2010.
[20] Mathirajan, M.; Sivakumar, A.I.; “A Literature Review, Classification and Simple Meta-analysis on Scheduling of Batch Processors in Semiconductor”,International Journal of Advanced Manufacturing Technology, vol. 29, p.p. 990-1001, 2006.
[21] Melouk, S.; Damodaran, P.; Cheng, P.Y.; “Minimizing make span for single machine batch processing with non-identical job sizes using simulated annealing”, International Journal of Production Economics, vol. 87,p.p. 141-147, 2004.
[22] Rafiee Parsa, N.; Karimi, B.; Husseinzadeh Kashan, A.; “A branch and price algorithm to minimize makespan on a single batch processing machine with non-identical job sizes”, Computers & Operations Research, vol. 37, p.p. 1720-1730, 2010.
[23] Uzsoy, R.; “A Single Batch Processing Machine with Non-identical Job Sizes”, International Journal of
Production Research, vol. 32, p.p. 1615-1635, 1994.
[24] Wang, H.M.; Chou, F.D.; “Solving the parallel batch- processing machines with different release times, job sizes, and capacity limits by metaheuristics”, Expert Systems with Applications, vol 37. p.p. 1510-1521,2010.
[25] Zhang, G.; Cai, X.; Lee, C.Y.; Wong, C.K.; “Minimizing makespan on a single batch processing machine with nonidentical job sizes”, Naval Research Logistics, vol. 48, p.p. 226-240, 2001.
[26] Zhang, W.G.; Chen, H.P.; Lu, D.; Shao, H.; “A Novel Differential Evolution Algorithm for a Single Batchprocessing
Machine with Non-identical Job Sizes”,Proc. Fourth International Conference on Natural Computation, p.p. 447-451, 2008.
[27] Zhang, Y.L.; Chen, H.P.; Shao, H.; Xu, R.; “Minimizing Makespan for Single Batch Processing Machine with Non-identical Job Sizes Using a Novel Algorithm: Free Search”, Proc. International Conference on Information Technology and Computer
Science p.p. 180-183, 2009.