[1] E. Pan, Exact solution for simply supported and multilayered magneto-electro-elastic plates, TRANSACTIONSAMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF APPLIED MECHANICS, 68(4) (2001) 608-618.
[2] E. Pan, F. Han, Exact solution for functionally graded and layered magneto-electro-elastic plates, International Journal of Engineering Science, 43(3) (2005) 321-339.
[3] J.M.S. Moita, C.M.M. Soares, C.A.M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Composite structures, 91(4) (2009) 421-426.
[4] S. Phoenix, S. Satsangi, B. Singh, Layer-wise modelling of magneto-electro-elastic plates, Journal of Sound and Vibration, 324(3) (2009) 798-815.
[5] R.K. Bhangale, N. Ganesan, Free vibration of simply supported functionally graded and layered magnetoelectro-elastic plates by finite element method, Journal of sound and vibration, 294(4) (2006) 1016-1038.
[6] Y. Li, J. Zhang, Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation, Smart materials and structures, 23(2) (2013)025002.
[7] J. Chen, P. Heyliger, E. Pan, Free vibration of threedimensional multilayered magneto-electro-elastic platesunder combined clamped/free boundary conditions, Journal of Sound and Vibration, 333(17) (2014) 4017-4029.
[8] L. Xin, Z. Hu, Free vibration of simply supported and multilayered magneto-electro-elastic plates, Composite structures, 121 (2015) 344-350.
[9] C. Xue, E. Pan, S. Zhang, H. Chu, Large deflection of a rectangular magnetoelectroelastic thin plate, Mechanics Research Communications, 38(7) (2011) 518-523.
[10] J. Sladek, V. Sladek, S. Krahulec, E. Pan, The MLPG analyses of large deflections of magnetoelectroelastic plates, Engineering Analysis with Boundary Elements,37(4) (2013) 673-682.
[11] A. Alaimo, I. Benedetti, A. Milazzo, A finite element formulation for large deflection of multilayered magnetoelectro-elastic plates, Composite Structures, 107 (2014)643-653.
[12] M. Rao, R. Schmidt, K.-U. Schr?der, Geometrically nonlinear static FE-simulation of multilayered magnetoelectro-elastic composite structures, Composite Structures, 127 (2015) 120-131.
[13] S. Kattimani, M. Ray, Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates, International Journal of Mechanical Sciences, 99(2015) 154-167.
[14] S. Razavi, A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Composite Structures, 119 (2015) 377-384.
[15] A. Shooshtari, S. Razavi, Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates, IJE transactions A: Basics, 28(1) (2015) 139-147.
[16] A. Shooshtari, S. Razavi, Large amplitude free vibration of symmetrically laminated magneto-electroelastic rectangular plates on Pasternak type foundation, Mechanics Research Communications, 69 (2015) 103-113.
[17] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2004.
[18] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[19] M. Talha, B. Singh, Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Applied Mathematical Modelling,34(12) (2010) 3991-4011.
[20] P. Ribeiro, Nonlinear vibrations of simply-supported plates by the p-version finite element method, Finite Elements in Analysis and Design, 41(9) (2005) 911-924.
[21] M. Taazount, A. Zinai, A. Bouazzouni, Large free vibration of thin plates: Hierarchic finite Element Method and asymptotic linearization, European Journal of Mechanics-A/Solids, 28(1) (2009) 155-165.
[22] M. Singha, R. Daripa, Nonlinear vibration and dynamic stability analysis of composite plates, Journal of Sound and Vibration, 328(4) (2009) 541-554.
[23] Y. Shi, R.Y. Lee, C. Mei, Finite element method for nonlinear free vibrations of composite plates, AIAA journal, 35(1) (1997) 159-166.
[24] A.H. Sheikh, M. Mukhopadhyay, Large amplitude free flexural vibration of stiffened plates, AIAA journal, 34(11)(1996) 2377-2383.
[25] C.-P. Wu, Y.-C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magnetoelectro-elastic plates, Composite Structures, 90(3) (2009)363-372.