[1] m. safian, m. akhlaghi, Determine the temperature distribution and residual stresses during welding with nonlinear finite element method with using a double ellipsoid heat source model in: 15th Annual Conference of Mechanical Engineering, Amirkabir University of Technology, 1386.
[2] E. Abedini, H. Ajam, M. Yazdi, Three-dimensional simulation of fluid flow in the laser welding process,in: 16th Annual Conference of Mechanical Engineering,Faculty of Engineering, Shahid Bahonar University,1387.
[3] K. Abderrazak, W. Kriaa, W. Ben Salem, H. Mhiri, G.Lepalec, M. Autric, Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd: YAG) with a magnesium alloy, Optics & Laser Technology, 41(4) (2009) 470-480.
[4] F. Javidrad, H. Farghadani, M. Haydari, M. Mashayekhy,An investigation into the microstructure and echanical properties of Ti-3Al -2.5V under micro-plasma arc welding, Modares Mechanical Engineering, 13(14) (2014) 199-209.
[5] R.D. Cook, Concepts and applications of finite element analysis, John Wiley & Sons, (2007).
[6] A.-K. Nehad, Enthalpy technique for solution of Stefan problems: application to the keyhole plasma arc welding process involving moving heat source, International communications in heat and mass transfer, 22(6) (1995)779-790.
[7] H. Du, L. Hu, J. Liu, X. Hu, A study on the metal flow in full penetration laser beam welding for titanium alloy,Computational materials science, 29(4) (2004) 419-427.
[8] R. Rai, J. Elmer, T. Palmer, T. DebRoy, Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium,Journal of physics D: Applied physics, 40(18) (2007)5753-5763.
[9] Q. Han, D. Kim, D. Kim, H. Lee, N. Kim, Laser pulsed welding in thin sheets of Zircaloy-4, Journal of Materials Processing Technology, 212(5) (2012) 1116-1122.
[10] R. Keanini, B. Rubinsky, PLASMA-ARC WELDING UNDER NORMAL AND ZERO GRAVITY, Welding Journal, 69(6) (1990) 41-50.
[11] X. He, P. Fuerschbach, T. DebRoy, Heat transfer and fluid flow during laser spot welding of 304 stainless steel, Journal of Physics D: Applied Physics, 36(12) (2003) 1388-1398.
[12] L. Yang, X. Peng, B. Wang, Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing, International Journal of Heat and Mass Transfer, 44(23) (2001) 4465-4473.
[13] E. Akman, A. Demir, T. Canel, T. S?nmazçelik, Laser welding of Ti6Al4V titanium alloys, Journal of materials processing technology, 209(8) (2009) 3705-3713.
[14] B.-C. Sim, W.-S. Kim, Melting and dynamic-surface deformation in laser surface heating, International journal of heat and mass transfer, 48(6) (2005) 1137-1144.
[15] M.D. H.Wangand, Tensile properties of LBW welds in Ti-6Al-4V alloy at evaluated temperatures below 450 oC,Materials Letters, 57(12) (2003) 1815- 1823.
[16] G.O. Brown, The history of the Darcy-Weisbach equation for pipe flow resistance, Environmental and Water Resources History, 38(7) (2002) 34-43.
[17] J.G. Berryman, S.C. Blair, Kozeny-Carman relations and image processing methods for estimating Darcy's constant, Journal of Applied Physics, 62(6) (1987) 2221-2228.
[18] T. Behrens, OpenFOAM's basic solvers for linear systems of equations, Solvers, preconditioners,smoothers, (2009).
[19] J. Nocedal, S.J. Wright, Conjugate gradient methods,Springer, 2006.
[20] X. Cao, M. Jahazi, Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd: YAG laser, Optics and Lasers in Engineering, 47(11)(2009) 1231-1241.
[21] A. Khorram, M. Ghoreishi, M.R.S. Yazdi, M. Moradi,Optimization of Bead Geometry in CO2 Laser Welding of Ti 6Al 4V Using Response Surface Methodology,Engineering, 3 (2011) 708-712.