تحلیل تنش‌های مکانیکی-حرارتی در دیسک‌های دوار با ضخامت و خواص متغیر در راستای شعاعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 گروه مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران

چکیده

چکیده: در این پژوهش ابتدا معادلات حاکم بر توزیع دما و تحلیل تنش‌های مکانیکی و حرارتی در یک دیسک دوار با ضخامت و خواص متغیر در راستای شعاعی استخراج می‌شوند. تمامی خواص مکانیکی و حرارتی ماده بر اساس یک تابع توانی تغییر می‌کنند بطوریکه که کسر حجمی ماده در راستای شعاعی بین دو مقدار دلخواه تغییر می‌کند. در استخراج معادلات حرارت، انتقال حرارت همرفتی از طریق سطوح دو طرف دیسک نیز در نظر گرفته می‌شوند و شرایط مرزی حرارتی دیسک به شکل شرایط دما ثابت در لبه‌ی داخلی و انتقال حرارت همرفتی در لبه‌ی خارجی دیسک در نظر گرفته می‌شود. تغییرات ضریب انتقال حرارت همرفتی در راستای شعاعی و وابستگی آن به سرعت زاوی‌های دیسک نیز در نظر گرفته شده‌اند. با توجه به پیچیدگی‌های موجود در معادلات، از روش تفاضلات مربعی برای حل تمامی معادلات استفاده شده و توزیع دما و مولفه‌های تنش و جابجایی در دیسک بدست خواهند آمد. در نهایت تاثیر چگونگی تغییرات ضخامت و خواص ماده در راستای شعاعی بر روی توزیع دما، تنش و جابجایی در دیسک بررسی می‌گردد. در نهایت با استفاده از مدل تامورا-توموتا-اوزاوا و از طریق مقایسه‌ی تنش‌ها با مقادیر مجاز بدست آمده، تسلیم یا عدم تسلیم در نقاط مختلف دیسک بررسی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermo-Mechanical Stress Analysis in a Rotating Radially Graded FG-Disc with Non-Uniform Thickness

نویسندگان [English]

  • K. Torabi 1
  • H. Afshari 2
1 1Mechanical Engineering Department, niversity of Kashan, Kashan, Iran
2 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
چکیده [English]

In this paper, according to one-dimensional heat transfer rules and two-dimensional elasticity theory, the set of governing equation on temperature and thermo-mechanical stresses in a rotating radially graded FG-disc with non-uniform thickness are derived. All mechanical and thermal properties of the material including elastic modulus, Poisson’s ratio, density and thermal conductivity and expansion coefficients are considered to be graded radially according to a power law function; The volume fraction changes in radial direction between two desired values. In thermal analysis, convention heat transfer through two sides of the disc are considered and thermal boundary conditions are considered as constant temperature at inner edge and convention heat transfer at outer one. In order to increase the accuracy of analysis, variation of convective heat transfer coefficient in radial direction and its dependency on the rotating speed are considered. Considering complexity in equations, differential quadrature method (DQM) is used as strong approach and both thermal and mechanical equations are solved numerically. Effect of various parameters such as rotating speed, variation of thickness and power law index on the distribution of temperature, stress and deflection of the disc are investigated. Also, based on the Tamura-Tomota-Ozawa model (TTO), yield strength of the disc is derived and its elastic and plastic parts are detected.

کلیدواژه‌ها [English]

  • Thermo-mechanical analysis
  • Rotating disc
  • Functionally graded materials
  • Tamura-Tomota-Ozawa model
  • Differential quadrature method
[1] A.C. Ugural, S.K. Fenster, Advanced mechanics of materials and applied elasticity, Pearson Education, 2011.
[2] T.Y. Reddy, H. Srinath, Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density, International Journal of Mechanical Sciences, 16(2) (1974) 85-89.
[3] U. Güven, The fully plastic rotating solid disk of variable thickness, ZAMMJournal of Applied Mathematics andMechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 74(1) (1994) 61-65.
[4] A. Eraslan, Y. Orcan, Elastic–plastic deformation of a rotating solid disk of exponentially varying thickness, Mechanics of Materials, 34(7) (2002) 423-432.
[5] M. Hojjati, A. Hassani, Theoretical and numerical analyses of rotating discs of non-uniform thickness and density, International Journal of Pressure Vessels and Piping, 85(10) (2008) 694-700.
[6] M. Bayat, M. Saleem, B. Sahari, A. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, International Journal of Pressure Vessels and Piping, 86(6) (2009) 357-372.
[7] A.N. Eraslan, Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions, International Journal of Mechanical Sciences, 45(4) (2003) 643-667.
[8] A. Hassani, M. Hojjati, G. Farrahi, R. Alashti, Semiexact elastic solutions for thermo-mechanical analysis of functionally graded rotating disks, Composite Structures, 93(12) (2011) 3239-3251.
[9] M. Shahzamanian, B. Sahari, M. Bayat, F. Mustapha, Z. Ismarrubie, Finite element analysis of thermoelastic contact problem in functionally graded axisymmetric brake disks, Composite Structures, 92(7) (2010) 1591-1602.
[10] A. Afsar, J. Go, Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modelling, 34(11) (2010) 3309-3320.
[11] S.H. Kordkheili, R. Naghdabadi, Thermoelastic analysis of a functionally graded rotating disk, Composite Structures, 79(4) (2007) 508-516.
[12] M. Bayat, B. Sahari, M. Saleem, A. Ali, S. Wong, Thermoelastic solution of a functionally graded variable thickness rotating disk with bending based on the firstorder shear deformation theory, Thin-Walled Structures, 47(5) (2009) 568-582.
[13] G. Nie, R. Batra, Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness, Composite Structures, 92(3) (2010) 720-729.
[14] J. Sharma, D. Sharma, S. Kumar, Stress and strain analysis of rotating FGM Thermoelastic circular disk by using FEM, International Journal of pure and applied mathematics, 74(3) (2012) 339-352.
[15] J. Wauer, B. Schweizer, Dynamics of rotating thermoelastic disks with stationary heat source, Applied Mathematics and Computation, 215(12) (2010) 4272-4279.
[16] X.-L. Peng, X.-F. Li, Thermal stress in rotating functionally graded hollow circular disks, Composite Structures, 92(8) (2010) 1896-1904.
[17] M. Shariyat, R. Mohammadjani, Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation non-uniformities, Latin American Journal of Solids and Structures, 10(5) (2013) 859-890.
[18] A.G. Arani, M. Abdollahian, Z.K. Maraghi, Thermoelastic analysis of a non-axisymmetrically heated FGPM hollow cylinder under multi-physical fields, International Journal of Mechanics and Materials in Design, 11(2)(2015) 157-171.
[19] A.T. Kalali, S.H. Moud, B. Hassani, Elasto-plastic stress analysis in rotating disks and pressure vessels made of functionally graded materials, Latin American Journal of Solids and Structures, 13(5) (2016) 819-834.
[20] A.G. Arani, E. Haghparast, Z.K. Maraghi, S. Amir, Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields, Composites Part B: Engineering, 68 (2015) 136-145.
[21] T.L. Bergman, F.P. Incropera, Introduction to heat transfer, John Wiley & Sons, 2011.
[22] G. Cardone, T. Astarita, G. Carlomagno, Heat transfer measurements on a rotating disk, International Journal of Rotating Machinery, 3(1) (1997) 1-9.
[23] G. Paulino, Z.-H. Jin, R. Dodds, S. Sahu, N. Badgayan, P.R. Sreekanth, Failure of functionally graded materials, (2014).
[24] R. Williamson, B. Rabin, J. Drake, Finite element analysis of thermal residual stresses at graded ceramicmetal interfaces. Part I. Model description and geometrical effects, Journal of Applied Physics, 74(2)(1993) 1310-1320.
[25] M. Mignolet, C. Eick, M. Harish, Free vibration of flexible rotating disks, Journal of sound and vibration, 196(5) (1996) 537-577.
[26] Z.-H. Jin, G.H. Paulino, R.H. Dodds Jr, Cohesive fracture modeling of elastic–plastic crack growth in functionally graded materials, Engineering Fracture Mechanics, 70(14) (2003) 1885-1912.
[27] R.G. Munro, Material properties of titanium diboride, Journal of Research of the National Institute of Standards and Technology, 105(5) (2000) 709.
[28] R. Carpenter, W. Liang, G.H. Paulino, J.C. Gibeling, Z. Munir, Fracture testing and analysis of a layered functionally graded Ti/TiB beam in 3-point bending, in: Materials Science Forum, Trans Tech Publ, 1999, pp.837-842.
[29] C.W. Bert, M. Malik, Differential quadrature method in computational mechanics: a review, Applied mechanics reviews, 49(1) (1996) 1-28.