[1] V. Sgobba, D.M. Guldi, Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics, Chemical society reviews, 38(1) (2009) 165-184.
[2] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91(1) (2009) 9-19.
[3] M. Yas, M. Heshmati, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling, 36(4) (2012) 1371-1394.
[4] M. Heshmati, M. Yas, Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads, Materials & Design, 49 (2013) 894-904.
[5] R. Moradi-Dastjerdi, M. Foroutan, A. Pourasghar, Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Materials & Design, 44 (2013) 256-266.
[6] H.-S. Shen, Y. Xiang, Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments, Engineering Structures, 56(2013) 698-708.
[7] R. Rafiee, R.M. Moghadam, Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling, Computational Materials Science, 63 (2012) 261-268.
[8] S. Khalili, A. Haghbin, Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads, Composite Structures, 98 (2013) 253-260.
[9] Z.-X. Wang, H.-S. Shen, Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments, Nonlinear Dynamics, 70(1) (2012) 735-754.
[10] Z. Lei, L. Zhang, K. Liew, Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates, International Journal of Mechanical Sciences, 99 (2015)208-217.
[11] M. Kim, Y.-B. Park, O.I. Okoli, C. Zhang, Processing, characterization, and modeling of carbon nanotubereinforced multiscale composites, Composites Science and Technology, 69(3) (2009) 335-342.
[12] E. Bekyarova, E. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. Hahn, T.-W. Chou, M. Itkis, R. Haddon, Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites, Langmuir, 23(7) (2007) 3970-3974.
[13] M. Rafiee, X. Liu, X. He, S. Kitipornchai, Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates, Journal of Sound and Vibration, 333(14) (2014) 3236-3251.
[14] M. Rafiee, X. He, S. Mareishi, K. Liew, Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates, International Journal of Applied Mechanics, 6(03) (2014) 1450025.
[15] X. He, M. Rafiee, S. Mareishi, K. Liew, Large amplitude vibration of fractionally damped viscoelastic CNTs/ fiber/polymer multiscale composite beams, Composite Structures, 131 (2015) 1111-1123.
[16] G. Bhardwaj, A. Upadhyay, R. Pandey, K. Shukla, Non-linear flexural and dynamic response of CNT reinforced laminated composite plates, Composites Part B: Engineering, 45(1) (2013) 89-100.
[17] N. Hu, J. Qiu, Y. Li, C. Chang, S. Atobe, H. Fukunaga, Y. Liu, H. Ning, L. Wu, J. Li, Multi-scale numerical simulations of thermal expansion properties of CNTreinforced nanocomposites, Nanoscale research letters, 8(1) (2013) 1-8.
[18] H.-S. Shen, A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators, Composite Structures, 91(3) (2009) 375-384.
[19] A.M. Zenkour, The refined sinusoidal theory for FGM plates on elastic foundations, International journal of mechanical sciences, 51(11) (2009) 869-880.
[20] N. Grover, B. Singh, D. Maiti, New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates, AIAA journal, 51(8) (2013) 1861-1871.
[21] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2004.
[22] R.-D. Chien, C.-S. Chen, Nonlinear vibration of laminated plates on an elastic foundation, Thin-walled structures, 44(8) (2006) 852-860.
[23] H.-S. Shen, J. Yang, L. Zhang, Dynamic response of Reissner–Mindlin plates under thermomechanical loading and resting on elastic foundations, Journal of Sound and Vibration, 232(2) (2000) 309-329.
[24] Y. Qu, S. Wu, H. Li, G. Meng, Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: Beams, plates and solids, Composites Part B: Engineering, 73 (2015) 96-110.
[25] B. Zhang, Y. He, D. Liu, Z. Gan, L. Shen, A non-classical Mindlin plate finite element based on a modified couple stress theory, European Journal of Mechanics-A/Solids, 42 (2013) 63-80.
[26] Y. Zhang, X. Wang, Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubesreinforced composites system, Journal of reinforced plastics and composites, 25(1) (2006) 71-88.
[27] J. Zhu, Z. Taylor, O. Zienkiewicz, The finite element method: its basis and fundamentals, in, Butterworth- Heinemann Burlington, VT, 2005.
[28] M. Shariyat, F. Farzan, Nonlinear eccentric low-velocity impact analysis of a highly prestressed FGM rectangular plate, using a refined contact law, Archive of Applied Mechanics, 83(4) (2013) 623-641.
[29] T. Kant, J. Varaiya, C. Arora, Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes, Computers & Structures, 36(3) (1990) 401-420.