تحلیل ارتعاشات نانوپوسته مدرج تابعی احاطه شده توسط بستر الاستیک با استفاده از نظریۀ تنش کوپل اصلاح شده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی، قزوین، ایران

چکیده

هدف از این پژوهش بررسی رفتار ارتعاشی یک نانو پوسته استوانه ای مدرج تابعی بر اساس تئوری تنش کوپل اصلاح شده می باشد. همچنین در اطراف این نانوپوسته بستر الاستیک پاسترناک در نظر گرفته شده است که در این مدل علاوه بر ثابت فنری نوع وینکلر، ثابت برشی نیز لحاظ شده است. علاوه بر این شرایط مرزی نانوپوسته در دو انتها به صورت تکیه گاه ساده فرض شده است. نانو پوسته استوانه ای درجه بندی شده تابعی، از ترکیب آلومینیوم-سرامیک ساخته شده است که کسر حجمی هر جزء و در نتیجه خصوصیات مکانیکی نانو پوسته استوانه ای بر مبنای قانون ساده توانی در راستای ضخامت تغییر می کند. معادلات حاکم بر حرکت و شرایط مرزی بر اساس تئوری برشی مرتبه اول و با استفاده از اصل هامیلتون، استخراج می شوند. روش حل نویر برای پیش بینی فرکانس های طبیعی نانو پوسته درجه بندی شده تابعی استفاده می شود. در نهایت تاثیر پارامترهایی مانند مقیاس طول ماده، شماره مد های فرکانسی محیطی، نسبت طول به شعاع پوسته استوانه ای، ضریب تصحیح برشی، شاخص توانی نسبت حجمی(N) و ضرایب بستر الاستیک وینکلر و پاسترناک بر فرکانس طبیعی نانو پوسته مدرج تابعی بحث خواهد شد. نوآوری این پژوهش در نظر گرفتن بستر الاستیک بر نانو پوسته استوانه ای مدرج تابعی با اعمال تئوری تنش کوپل اصلاح شده می باشد. تطابق بسیار خوب نتایج به دست آمده از شبیه سازی دینامیک مولکولی توسط پژوهشگران قبلی با نتایج پژوهش حاضر، بیانگر اهمیت این پژوهش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Free Vibration Analysis of a Functionally Graded Cylindrical Nanoshell Surrounded by Elastic Foundation Based on the Modified Couple Stress Theory

نویسندگان [English]

  • M. Ghadiri
  • H. Safarpour
Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

In this article, free vibration analysis of functionally graded cylindrical nanoshell on
the basis of the modified couple stress theory is investigated. The nanoshell is embedded in an elastic
Pasternak medium, which is obtained by adding a shear layer to the Winkler model. In addition, the
boundary conditions at two ends of cylindrical nanoshell are simply supported. It is assumed that the
functionally graded cylindrical nanoshell, is made of aluminum and ceramic, follows the volume fraction
definition and law of mixtures, and its properties change as a power function through its thickness.
Governing equations and boundary conditions are obtained by applying the Hamilton’s principle and are
based on first-order shear deformation. Navier solution is used for predicting the natural frequencies of
functionally graded cylindrical nanoshell. Finally, the effect of parameters such as material length scale,
circumferential wave number, the length to radius ratio, shear correction factor, power low index and
elastic foundation coefficients of Winkler and Pasternak on natural frequency of functionally graded
cylindrical nanoshell are identified. The results show, there is a very good agreement between the results
of molecular dynamics simulations by previous researchers with the results of this study.

کلیدواژه‌ها [English]

  • Cylindrical nanoshell
  • Modified Couple Stress Theory
  • Hamilton’s principle
  • Functionally graded material
  • Elastic foundation
[1] E. Müller, Č. Drašar, J. Schilz, W. Kaysser, Functionally graded materials for sensor and energy applications,Materials Science and Engineering: A, 362(1) (2003)17-39.
[2] J. Qiu, J. Tani, T. Ueno, T. Morita, H. Takahashi, H. Du,Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart materials and Structures, 12(1) (2003) 115.
[3] L.S. Liu, Q.J. Zhang, P.C. Zhai, The Optimization Design on Metal/Ceramic FGM Armor with Neural Net and Conjugate Gradient Method, in: Materials Science Forum, Trans Tech Publ, (2003) 791-796.
[4] M. Vable, Intermediate mechanics of materials, Oxford University Press New York, NY, 2008.
[5] M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian,Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, in: ASME 2009 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers,(2009) 539-544.
[6] Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, TiNi-based thin films in MEMS applications: a review, Sensors and Actuators A: Physical, 112(2) (2004) 395-408.
[7] A. Witvrouw, A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications, in: Materials science forum, Trans Tech Publ, 2005, pp. 255-260.
[8] A. Chong, D.C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, 14(10) (1999) 4103-4110.
[9] F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[10] R. Gholami, R. Ansari, A. Darvizeh, S. Sahmani, Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory, International Journal of Structural Stability and Dynamics, 15(04) (2015) 1450070.
[11] A.E.H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press, 2013.
[12] L.H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending, Trans. Asme, 56(11) (1934) 795-806.
[13] J.L. Sanders Jr, An improved first-approximation theory for thin shells, 1959.
[14] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, (1945).
[15] R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, (1951).
[16] M. Farid, P. Zahedinejad, P. Malekzadeh, Threedimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method,Materials & Design, 31(1) (2010) 2-13.
[17] Y.T. Beni, F. Mehralian, H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Composite Structures, 120 (2015) 65-78.
[18] M. Mohammadimehr, M. Moradi, A. Loghman, Influence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings, Journal of Solid Mechanics Vol, 6(4) (2014) 347-365.
[19] T.R. Tauchert, Energy principles in structural mechanics, McGraw-Hill Companies, 1974.
[20] R. Ansari, R. Gholami, H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Composites Part B: Engineering,43(8) (2012) 2985-2989.
[21] K. Soldatos, V. Hadjigeorgiou, Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, Journal of Sound and Vibration, 137(3) (1990) 369-384.
[22] C. Loy, K. Lam, C. Shu, Analysis of cylindrical shells using generalized differential quadrature, Shock and Vibration, 4(3) (1997) 193-198.