[1] E. Müller, Č. Drašar, J. Schilz, W. Kaysser, Functionally graded materials for sensor and energy applications,Materials Science and Engineering: A, 362(1) (2003)17-39.
[2] J. Qiu, J. Tani, T. Ueno, T. Morita, H. Takahashi, H. Du,Fabrication and high durability of functionally graded piezoelectric bending actuators, Smart materials and Structures, 12(1) (2003) 115.
[3] L.S. Liu, Q.J. Zhang, P.C. Zhai, The Optimization Design on Metal/Ceramic FGM Armor with Neural Net and Conjugate Gradient Method, in: Materials Science Forum, Trans Tech Publ, (2003) 791-796.
[4] M. Vable, Intermediate mechanics of materials, Oxford University Press New York, NY, 2008.
[5] M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian,Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, in: ASME 2009 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers,(2009) 539-544.
[6] Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, TiNi-based thin films in MEMS applications: a review, Sensors and Actuators A: Physical, 112(2) (2004) 395-408.
[7] A. Witvrouw, A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications, in: Materials science forum, Trans Tech Publ, 2005, pp. 255-260.
[8] A. Chong, D.C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, 14(10) (1999) 4103-4110.
[9] F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[10] R. Gholami, R. Ansari, A. Darvizeh, S. Sahmani, Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory, International Journal of Structural Stability and Dynamics, 15(04) (2015) 1450070.
[11] A.E.H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press, 2013.
[12] L.H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending, Trans. Asme, 56(11) (1934) 795-806.
[13] J.L. Sanders Jr, An improved first-approximation theory for thin shells, 1959.
[14] E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, (1945).
[15] R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, (1951).
[16] M. Farid, P. Zahedinejad, P. Malekzadeh, Threedimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method,Materials & Design, 31(1) (2010) 2-13.
[17] Y.T. Beni, F. Mehralian, H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Composite Structures, 120 (2015) 65-78.
[18] M. Mohammadimehr, M. Moradi, A. Loghman, Influence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings, Journal of Solid Mechanics Vol, 6(4) (2014) 347-365.
[19] T.R. Tauchert, Energy principles in structural mechanics, McGraw-Hill Companies, 1974.
[20] R. Ansari, R. Gholami, H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Composites Part B: Engineering,43(8) (2012) 2985-2989.
[21] K. Soldatos, V. Hadjigeorgiou, Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, Journal of Sound and Vibration, 137(3) (1990) 369-384.
[22] C. Loy, K. Lam, C. Shu, Analysis of cylindrical shells using generalized differential quadrature, Shock and Vibration, 4(3) (1997) 193-198.