ارتعاشات آزاد غیر خطی در تیرهای منعطف با بخش میانی صلب و جرم نوک

نوع مقاله : مقاله پژوهشی

نویسندگان

مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

چکیده: یک روش معمول به منظور بهینه کردن سفتی درجه آزادی یک سازوکار منعطف استفاده از یک جسم صلب میانی در تیرهای منعطف آن است. هدف این مقاله، بررسی ارتعاشات آزاد غیرخطی یک تیر منعطف با بخش میانی صلب است که درانتهای آن یک جرم متمرکز وصل شده است. به منظور تعیین معادلات دیفرانسیل جزئی غیرخطی حاکم بر رفتار تیر از اصل
همیلتون استفاده می‌شود. سپس شکل مدهای خطی شده و بی بعد تیر منعطف به روش تحلیلی محاسبه می‌شود و با نتایج حاصله از نرم افزار آباکوس مقایسه می‌گردد. به کمک شکل مد اول سازوکار و معادلات لاگرانژ، معادلات دیفرانسیل دینامیکی حاکم به دست می‌آید. آنگاه این معادلات به صورت عددی به کمک نرم افزار متلب حل می‌گردد. تبدیل فوریه گسسته پاسخ‌های
دینامیکی نشان می‌دهد که پاسخ دینامیکی عرضی تنها یک بسامد اصلی دارد؛ در حالی که پاسخ‌های محوری دینامیکی دارای سه بسامد اصلی می‌باشد. مشاهده می‌شود که این بسامدها، همان بسامدهای طبیعی سامانه خطی است که به صورت تحلیلی با فرم بسته قابل ارائه هستند. رویکرد ارائه شده در این پژوهش می‌تواند برای تحلیل و بهینه‌سازی رفتار دینامیکی سازوکارهای
منعطف مورد استفاده قرار بگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Free Vibration in Flexure Beams with an Intermediate Rigid Element and a Tip Mass

نویسندگان [English]

  • A. Davaq
  • H. Moeenfard
  • M. Moavenian
Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

ABSTRACT: A usual method in achieving a proper value for the ratio of constraint to degree of freedom stiffness in a compliant mechanism, is using an intermediate rigid element in its constitutive beams. This paper aims to study the nonlinear free vibration of a stiffened beam with a mass connected to its tip. Hamilton’s principle is used to find nonlinear partial differential equations governing behavior of the beam. The mode-shapes of the normalized and linearized system are then found analytically and verified via Abaqus simulations. Using a single mode approximation, the first mode-shape of the system is used along with the Lagrange equations to find governing ordinary differential equations of degree of freedom
and degree of constraint dynamic. These equations are then solved numerically using MATLAB. The Discrete Fourier Transform of dynamic responses show that the degree of freedom dynamic contains a single dominant frequency, while the constraint dynamic contains three main harmonics. It is observed that dominant frequencies are essentially natural frequencies of the linearized system which are available in a closed form. The suggested analytical formulations as well as the proposed frequency analysis, is expected to provide an effective approach for analytical dynamic modeling of more complex compliant mechanisms.

کلیدواژه‌ها [English]

  • Flexure beam
  • Rigid intermediate element
  • Nonlinear oscillations
  • Mode shape
  • Frequency analysis
[1] S. beedy, M. Tudor and N. white, Energy Harvesting Vibration Sources for Microsystems Applications, Measurment Science Technology, 12)4( (2006) 175-195.
[2] M. Li, E. J. Ng, V. A. Hong, C. H. Ahn, Y. Yang, T. W.Kenny and D. A. Horsley, Single Structure 3-Axis Lorentz Force Magnetometer With Sub-30 nT/√HZ Resolution, in IEEE, San Francisco, 2014.
[3] G. Dai, F. pohlenz, H.-U. Danzebrink, M. Xu, K. hasche and G. Wilkening, Metrological Large Range Scanning  Probe Microscope, Review of Scientific Instruments, 75(3) (2004) 962-969.
[4] P. Chatterjee and M. Bryant, Design of a Compliant Flexure Joint for Use in a Flow Energy Harvester, in ASME 2014 Conference on Smart Materials, Rhode Island, 2014.
[5] Q. Yao, J. Dong and P. M. Ferreira, A Novel Parallel-Kinematics Mechanisms for Integrated, Multi-Axis Nanopositioning-Part 1: Kinematics and Design for Fabrication, Precision Engineering, 32(6) (2008) 721-732.
[6] S. Awtar and G. parmar, Design of a Large Range XY Nanopositioning System, Journal of Mechanism and Robatics, 5(2) (2013) 102-112.
[7] S. S. Rao, Vibration of Continuous Systems, pp 317-326, Hoboken: Wiley, 2007.
[8] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, pp39-141, New York: Wiley, 1979.
[9] M. R. M. C. da Silva, Non-Linear Flexural-Flexural-Torsional Extensional Dynamics of Beams-I. Formulation, International Journal of Solids and Structures, 24(2) (1988) 1225-1234.
[10] M. R. M. C. Da Silva, A Reduced-Order Analytical Model for the Nonlinear Dynamics of a Class of Flexible Multi-Beam Structures, International Journal of Solids and Structures, 35(5) (1988) 3299-3315.
[11] H. Moeenfard and S. Awtar, Modeling Geometric Non-Linearities in the Free Vibration of a Planar Beam Flexure With a Tip Mass, Journal of Mechanical Design, 136(4) (2012) 208-216.
[12] M. Olfatnia, S. Sood, Jason J. Gorman and S. Awtar,, Large Stroke Electrostatic Comb-Drive Actuators Enabled by a Novel Flexure Mechanism, Journal of Microelectromechanical Systems, 22(2) (2013) 112-124.
[13] S. Awtar, A. H. Slocum and E. Sevincer, Characteristics of Beam-Based Flexure Modules, Journal of Mechanical Design, 129(6) (2007) 515-526.