تحلیل الکترومکانیک استوانه چرخان ساخته شده از مواد پیزوالکتریک مدرج تابعی به کمک نظریه تغییر شکل برشی مرتبه بالا: حسگر و عملگر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران

چکیده

در این مقاله بر مبنای نظریه تغییرشکل برشی مرتبه بالا، معادلات الکتروالاستیک حاکم بر استوانه‌های جدار ضخیم متقارن محوری ساخته شده از مواد ناهمگن مدرج تابعی در حالت کلّی استخراج شده است. جابه جایی‌ها، تن شها و پتانسیل الکتریکی برای استوانه با دو سر بسته مقید، به صورت تحلیلی به دست آمده است. این راهکار منجر به تعریف فرمولاسیون جدید برای تحلیل پوسته‌های جدار ضخیم بر پایه نظریه تغییرشکل برشی شده است. معادلات تعادل مکانیکی به روش انرژی به دست آمد و برای یافتن معادلات تعادل الکتریکی از معادلات ماکسول و گاوس استفاده شد. حل معادلات حاکم در حالت عمومی )مستقل از مرتبه نظریه تغییرشکل برشی( به صورت کوپل مکانیکی-الکتریکی و با استفاده از روش بردارهای ویژه ارائه شد. در این بررسی تمامی خواص الکترومکانیک در راستای شعاعی به صورت تابع توانی فرض شده است. به منظور بررسی صحت نتایج، جابه جایی شعاعی، پتانسیل الکتریکی و تنش شعاعی استوانه جدار ضخیم همگن با نظریه‌ی الاستیسیته مستوی مقایسه و شباهت ها نشان داده شده است. به منظور بررسی تأثیر افزایش مرتبه نظریه‌ی تغییرشکل برشی بر مقادیر جابه‌جایی‌ها، تنش‌ها و پتانسیل الکتریکی، مقایسه‌ای بین نتایج حاصل از نظریه‌ی تغییرشکل برشی مرتبه اول و سوم صورت گرفته است. نتایج نشان می‌دهد که استفاده از تقریب مرتبه بالا برای تحلیل الکتروالاستیک پوسته‌های استوانه‌ای ساخته شده از مواد پیزوالکتریک مدرج تابعی ضروری است. در انتها با بهره‌گیری از روش ارائه شده، تأثیر بارگذاری‌های الکتریکی و مکانیکی بر رفتار تنش‌ها، جابه جایی‌ها و توزیع پتانسیل الکتریکی سیلندر بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electro-mechanical Analysis of Rotating Cylinder Made of Functionally Graded Piezoelectric Materials: Sensor and Actuator

نویسندگان [English]

  • M. Jabbari
  • Mohammad Zamani Nejad
Mechanical Engineering Department, Yasouj University, Yasouj, Iran
چکیده [English]

In this paper, based higher shear deformation theory, electro-elastic equation of functionally graded material axisymmetric thick-walled cylinders in general form is presented. The displacements, stresses and electrical potential in clamped-clamped cylindrical shells analytically are calculated. The presented approach leads to the definition of new formulation to study thick shells based on shear deformation theory. The mechanical equilibrium equation obtained by energy method and for finding electrical equilibrium equation used Maxwell and Gauss equations. The governing equation solved in general form (independent of the order of shear deformation theory) by the coupled electro-mechanical using eigen vectors In this study, all mechanical and electrical piezoelectric material properties, were considered to follow an identical power law in the radial direction. The results obtained in the present paper have been compared with findings of plane elasticity theory. For investigating the effect of higher order approximations on displacements and stresses and electrical potential, a comparison between the results of first and third-order shear deformation theory have been studied. The numerical results show that the higher-order approximations must be applied in electro-elastic analysis of cylindrical shells made of functionally graded piezoelectric material. Finally, some numerical results are presented to study the effects of mechanical and electrical loading on the stresses, displacements and electrical potential of the cylinder.

کلیدواژه‌ها [English]

  • Electromechanical analysis
  • Rotating cylindrical shell
  • Shear deformation theory
  • Functionally graded material
  • Piezoelectric material
[1] W.G. Cady, Piezoelectricity: Volume Two: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, Courier Dover Publications, 2018.
[2] E.F. Crawley, J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, 25(10) (1987) 1373-1385.
[3] W.-S. Hwang, H.C. Park, Finite element modeling of piezoelectric sensors and actuators, AIAA journal, 31(5) (1993) 930-937.
[4] C.-Q. Chen, Y.-P. Shen, X.-M. Wang, Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending, International Journal of Solids and Structures, 33(30) (1996) 4481-4494.
[5] S. Kapuria, S. Sengupta, P. Dumir, Three-dimensional solution for simply-supported piezoelectric cylindrical shell for axisymmetric load, Computer Methods in Applied Mechanics and Engineering, 140(1-2) (1997) 139-155.
[6] R. Rajapakse, Y. Zhou, Stress analysis of piezoceramic cylinders, Smart materials and structures, 6(2) (1997) 169.
[7] C. Weiqiu, D. Haojiang, Exact static analysis of a rotating piezoelectric spherical shell, Acta Mechanica Sinica, 14(3) (1998) 257-265.
[8] W. Chen, H. Ding, J. Liang, The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property, International journal of solids and structures, 38(38-39) (2001) 7015-7027.
[9] X.-H. Wu, C. Chen, Y.-P. Shen, X.-G. Tian, A high order theory for functionally graded piezoelectric shells, International Journal of Solids and Structures, 39(20) (2002) 5325-5344.
[10] X.-H. Wu, Y.-P. Shen, C. Chen, An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators, Materials Letters, 57(22-23) (2003) 3532-3542.
[11] D. Galic, C. Horgan, The stress response of radially polarized rotating piezoelectric cylinders, Journal of applied mechanics, 70(3) (2003) 426-435.
[12] C.-P. Wu, Y.-S. Syu, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, International Journal of Solids and Structures, 44(20) (2007) 6450-6472.
[13] G. Sheng, X. Wang, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Applied Mathematical Modelling, 34(9) (2010) 2630-2643.
[14] A.M. Zenkour, Piezoelectric behavior of an inhomogeneous hollow cylinder with thermal gradient, International Journal of Thermophysics, 33(7) (2012) 1288-1301.
[15] A. Alibeigloo, Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers, Composite Structures, 93(2) (2011) 961-972.
[16] A. Ghorbanpour, A. Loghman, A. Abdollahitaheri, V. Atabakhshian, Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder, Journal of Mechanics of Materials and Structures, 6(6) (2011) 869-882.
[17] M. Arefi, G. Rahimi, Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity, Acta Mechanica, 223(1) (2012) 63-79.
[18] J.J. Fesharaki, V.J. Fesharaki, M. Yazdipoor, B. Razavian, Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 36(11) (2012) 5521-5533.
[19] G. Rahimi, M. Arefi, M. Khoshgoftar, Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method, Mechanics, 18(3) (2012) 292-300.
[20] H.-L. Dai, T. Dai, H.-Y. Zheng, Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder, Meccanica, 47(2) (2012) 423-436.
[21] R.A. Alashti, M. Khorsand, Three-dimensional nonlinear thermo-elastic analysis of functionally graded cylindrical shells with piezoelectric layers by differential quadrature method, Acta Mechanica, 223(12) (2012) 2565-2590.
[22] A. Zenkour, Hygrothermoelastic responses of inhomogeneous piezoelectric and exponentially graded cylinders, International Journal of Pressure Vessels and Piping, 119 (2014) 8-18.
[23] M.Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading, International Journal of Engineering Science, 89 (2015) 86-99.
[24] M.Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of rotating thick cylindrical pressure vessels under non-uniform pressure: linear and non-linear thickness, Periodica Polytechnica Mechanical Engineering, 59(2) (2015) 65-73.
[25] M. Zamani Nejad, M. Jabbari, M. Ghannad, A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers, The Scientific World Journal, 2014 (2014).
[26] M.Z. Nejad, M. Jabbari, M. Ghannad, A semi-analytical solution of thick truncated cones using matched asymptotic method and disk form multilayers, Archive of Mechanical Engineering, 61(3) (2014) 495-513.
[27] M. Zamani Nejad, M. Jabbari, M. Ghannad, Elastic analysis of rotating thick truncated conical shells subjected to uniform pressure using disk form multilayers, ISRN Mechanical Engineering, 2014 (2014).
[28] M.Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading, Composite Structures, 122 (2015) 561-569.
[29] E. Heydari, S. Hashemi, S.S. Roknizadeh, Stress Analysis of Functionally Graded Cylindrical Shells under Magneto-Thermo-Elastic Loads.
[30] H.-L. Dai, H.-J. Jiang, Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell, Mechanics of Advanced Materials and Structures, 22(4) (2015) 281-289.
[31] A. Atrian, J.J. Fesharaki, S. Nourbakhsh, Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads, Applied Mathematics and Mechanics, 36(7) (2015) 939-954.
[32] M. Jabbari, M. Aghdam, Asymmetric thermal stresses of hollow FGM cylinders with piezoelectric internal and external layers, (2015).
[33] M.Z. Nejad, M. Jabbari, M. Ghannad, A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness, Acta Mechanica, 228(1) (2017) 215-231.
[34] M. Jabbari, M.Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading, International journal of engineering science, 96 (2015) 1-18.
[35] M. Jabbari, M.Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Composites Part B: Engineering, 96 (2016) 20-34.
[36] Ghannad M, Rahimi, G H, Esmaeilzadeh Khadem S. General Solution of Shear Deformation of Axisymmetric Functionally Graded Thick Cylinderical Shells. Modares Mechanical Engineering. 2011; 10 (4) :13-26. (in Persian).
 [37] V.Z. Parton, Fracture mechanics of piezoelectric materials, Acta Astronautica, 3(9-10) (1976) 671-683.
[38] A. Fernandes, J. Pouget, Structural response of composite plates equipped with piezoelectric actuators, Computers & structures, 84(22-23) (2006) 1459-1470.
[39] S.S. Vel, B.P. Baillargeon, Analysis of static deformation, vibration and active damping of cylindrical composite shells with piezoelectric shear actuators, Journal of Vibration and Acoustics, 127(4) (2005) 395-407.